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1. Introduction

The main purpose of the second Beam Energy Scan at RHIC is to discover the critical point on
the QCD phase diagram, which separates the known crossover transition at low chemical potential
µB [1] from a postulated first order phase transition at larger density/chemical potential. A first
principle prediction of the existence and location of the critical point is still missing, due to the
fermionic sign problem that hinders Monte Carlo simulations at finite chemical potentials. How-
ever, the existence of the critical point has been predicted by several QCD-like models (for a review
see e.g. [2]). The location of the critical point depends on the model used to predict it, which makes
its experimental search very challenging. In view of the BESII, it is therefore important to predict
the behavior of experimental observables in the vicinity of the critical point.

Hydrodynamical simulations have proven to be extremely successful in describing the matter
created in heavy-ion collisions. Even if hydrodynamics itself needs to be modified in the vicinity of
a critical point [3, 4, 5, 6], the equation of state which serves as an input to these simulations must
contain a critical point with the correct singular behavior, besides reproducing all known constraints
from lattice QCD. We have recently constructed a family of equations of state, which match lattice
QCD results up to O(µ4

B) and contain a critical point in the 3D Ising model universality class [7].
At µB = 0, the EoS of QCD is known with high precision, in the case of 2+1 [8, 9, 10] and

2+1+1 [11] quark flavors. Lattice QCD simulations allow us to reconstruct the equation of state as
a Taylor series in powers of µB/T [12, 13, 14, 15, 16] or an analytic continuation from imaginary
µB [17, 18, 19, 20, 21, 22, 23, 24]. The Taylor expansion of the pressure in µB/T around µB = 0
can be written as:

P(T,µB) = T 4
∑
n

c2n(T )
(

µB

T

)2n
, (1.1)

where the coefficients of the expansion are the susceptibilities of the baryon number:

cn(T ) =
1
n!

∂ nP/T 4

∂ (µB/T )n

∣∣∣∣
µB=0

=
1
n!

χn(T ) . (1.2)

After the early results for c2, c4 and c6 [13], the first continuum extrapolated results for c2

were published in Ref. [25]; in Ref. [26] c4 was shown, but only at finite lattice spacing. The
continuum limit for c6 was published for the first time in [27], and later in [28]. In [29], a first
determination of c8, at two values of the temperature and Nt = 8 was presented. More recently,
an estimate of the temperature dependence of c8 was presented at Nt = 12 [30]. The advantage of
the Taylor expansion method is that all the quantities are calculated at vanishing baryon chemical
potential, where lattice QCD simulations do not suffer from the fermion sign problem (for a recent
review, see e.g. [31]).

2. Ising model Equation of State

The parameterization of the scaling Equation of state for the Ising model is usually given in
terms of magnetization M as a function of magnetic field h and reduced temperature r =(T−Tc)/Tc

(or auxiliary variables R and θ . The following form for the parametrization meets the requirements
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[32, 33, 34, 35]:

M = M0Rβ
θ , (2.1)

h = h0Rβδ h̃(θ) , (2.2)

r = R(1−θ
2) . (2.3)

where M0, h0 are normalization constants, h̃(θ) = θ(1 + aθ 2 + bθ 4) with a = −0.76201, b =

0.00804. β ' 0.326 and δ ' 4.80 are 3D Ising critical exponents, and the parameters take on
the values R ≥ 0, |θ | ≤ θ0 ' 1.154, θ0 being the first non-trivial zero of h̃(θ). The values of the
normalization constants are such that M(r =−1,h = 0+) = 1 and M(r = 0,h) ∝ sgn(h) |h|1/δ : this
yields M0 ' 0.605, h0 ' 0.394.

The Gibbs free energy density then follows from this parametrization:

G(h,r) = F(M,r)−Mh , (2.4)

where F(M,r) is the free energy density, defined as:

F(M,h) = h0M0R2−αg(θ) , (2.5)

where α ' 0.11 is another critical exponent of the 3D Ising model (also, the relation 2−α = β (δ +

1) holds). The function g(θ) is fixed by noticing that h = (∂F/∂M)h and solving the following
differential equation:

h̃(θ)(1−θ
2 +2βθ

2) = 2(2−α)θg(θ)+(1−θ
2)g′(θ) (2.6)

which results in:
g(θ) = c0 + c1(1−θ

2)+ c2(1−θ
2)2 + c3(1−θ

2)3 , (2.7)

with:

c0 =
β

2−α
(1+a+b) , (2.8)

c1 = −1
2

1
α−1

{(1−2β )(1+a+b)−2β (a+2b)} , (2.9)

c2 = − 1
2α
{2βb− (1−2β )(a+2b)} , (2.10)

c3 = − 1
2(α +1)

b(1−2β ) . (2.11)

To proceed with the mapping of the Ising model onto the QCD phase diagram we notice that the
Gibbs free energy density equals the pressure up to a minus sign: G =−P, hence:

PIsing(R,θ) = h0M0R2−α
[
θ h̃(θ)−g(θ)

]
. (2.12)

We now map the phase diagram of the 3D Ising model onto the one of QCD, so that the critical
point of the Ising model r = h = 0 corresponds to the one of QCD, and that the lines of first order
phase transition and crossover in the Ising model are mapped onto those of QCD.
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The simplest way to do so is through a linear map as follows [36]:

T −TC

TC
= w(rρ sinα1 +h sinα2) , (2.13)

µB−µBC

TC
= w(−rρ cosα1−h cosα2) , (2.14)

which can be visualized in Fig. 1. This map makes use of six parameters, two of which correspond
to the location of the critical point on the QCD phase diagram, two are the angles that the r and h
axes form with the T = const. lines, and (w,ρ) are scale factors for the variables r and h. While
w represents a global scaling for the Ising variables, namely determining the size of the critical
region, ρ represents a relative scaling of r and h, thus roughly determining the shape of it.

Figure 1: Non-universal map from Ising variables (r,h) to QCD coordinates (T,µB)

At this point it is possible to transport the thermodynamics of the Ising model (written in terms
of (R,θ)), into the QCD phase diagram, given a choice of parameters for the map.

It is possible to impose some constraint on the parameter choice by making use of additional
arguments for the location of the critical point. For example, the curvature of the transition line at
µB = 0 has been estimated in lattice simulations [37, 38, 39]. The shape of such transition line can
be approximated with a parabola:

T = T0 +κ T0

(
µB

T0

)2

+O(µ4
B) (2.15)

where T0 and κ are the transition temperature and curvature of the transition line at µB = 0, re-
spectively. The number of the parameters is thus reduced to four, the angle α1 also being fixed
by:

α1 = tan−1
(

2
κ

T0
µBC

)
. (2.16)

In the following, remembering that the aim of the EoS is to be employed in hydrodynamic sim-
ulations for heavy-ion collisions in the BES-II program, we will consider a choice of the baryonic
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chemical potential which is µBC = 350 MeV, resulting in:

TC ' 143.2MeV , α1 ' 3.85 ◦ . (2.17)

In addition, the axes are chosen to be orthogonal, as we already mentioned, so that α2 ' 93.85 ◦.
Finally, the scaling parameters are initially chosen as:

w = 1 , ρ = 2 . (2.18)

Later we will explore different choices for w and ρ , trying to reduce their acceptable range on the
basis of physical conditions for the thermodynamic quantities.

3. Thermodynamics

In the following, we assume that the lattice QCD expansion coefficients can be written as a sum
of an “Ising” contribution coming from the critical point of QCD, and a “Non-Ising” contribution,
which would contain the regular part as well as any other possible criticality present in the region
of interest:

T 4cLAT
n (T ) = T 4cNon−Ising

n (T )+ f (T,µB = 0)cIsing
n (T ) . (3.1)

where f (T,µB) is a regular function of the temperature and chemical potential, with dimension of
energy to the fourth power. We choose f (T,µB) = T 4

C . Note that Eq (3.1) is to be understood as
a definition for the cNon−Ising

n coefficients, which we obtain as a difference between the other two
contributions. The full pressure is then reconstructed simply by adding the critical contribution at
any (T,µB) to the Taylor expanded “Non-Ising” one:

P(T,µB) = T 4
∑
n

cNon−Ising
2n (T )

(
µB

T

)2n
+PQCD

crit (T,µB) . (3.2)

Note that in Eq. (3.2), the critical pressure is obtained from Eq. (2.12) with the multiplication by
f (T,µB) in Eq. (3.1):

Pcrit
QCD(T,µB) = f (T,µB)PIsing(R(T,µB),θ(T,µB)) . (3.3)

Because of the charge conjugation symmetry, in QCD the partition function needs to be an
even function of the baryon chemical potential:

Z (T,−µB) = Z (T,µB) , (3.4)

as well as the pressure. Thus QCD must possess a critical point at both µBC and −µBC. To achieve
this we need to write Eq. (3.5) below. This form does not modify the singular critical behavior at the
critical point(s) and automatically ensures that the odd-power coefficients in the Taylor expansion
in µB vanish, as they should.

Pcrit
QCD(T,µB) =

1
2

f (T,µB)PIsing
symm(R(T,µB),θ(T,µB)) =

=
1
2

f (T,µB)
{

PIsing(R(T,µB),θ(T,µB))+PIsing(R(T,−µB),θ(T,−µB))
}
,(3.5)
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which will have the effect of slightly changing the form of the critical pressure (the main one being
that now the pressure at the critical point is non-zero, whereas it would be zero in the straightfor-
ward definition) but not its singular behavior, leaving all the even order derivatives unchanged.

In Fig.2 we can see the comparison between the lattice data (and the extension with the HRG
model) and the resulting parametrization. The HRG model employed to calculate the pressure does
not contain any interaction, and makes use of the most up to date particle list available from the
Particle Data Group [40] (list PDG2016+ in [41]).

Figure 2: Parametrization of baryon susceptibilities from Lattice QCD [9, 42] and HRG model calculations.

Fig. 3 shows the comparison of the “Ising” and “Non-Ising” contributions to the parametrized
lattice/HRG model results.

4. Results

To cure some pathological behavior of our EoS at small temperatures, we perform a smooth
merging with the HRG model EoS.

The smooth merging can be obtained through a hyperbolic tangent as:

PFinal(T,µB)

T 4 =
P(T,µB)

T 4
1
2

(
1+ tanh

(
T −T ′(µB)

∆T ′

))
+

+
PHRG(T,µB)

T 4
1
2

(
1− tanh

(
T −T ′(µB)

∆T ′

))
, (4.1)

where T ′(µB) works as the “switching temperature”, and ∆T ′ is roughly the size of the “overlap
region” where both pressures contribute to the sum. The dependence on the baryon chemical
potential of the “switching temperature” is chosen to be parabolic: this way, the “switching line”
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Figure 3: Comparison of critical (blue, dot-dashed) and “Non-Ising” (red, dashed) contributions to baryon
susceptibilities up to O(µ4

B) with the parametrized lattice data (black, solid).

between the pressure from our procedure and the one from the HRG model is parallel to the chiral
transition curve.

In order to complete the thermodynamic description of the finalized equation of state obtained
in Eq. (4.1), we can compute various thermodynamic observables of interest. In addition to the
pressure, we compute the entropy density, baryon density, energy density and speed of sound nor-
malized by the correct power of the temperature:

P(T,µB)

T 4 ,
S(T,µB)

T 3 =
1

T 3

(
∂P
∂T

)
µB

,
nB(T,µB)

T 3 =
1

T 3

(
∂P
∂ µB

)
T
, (4.2)

ε(T,µB)

T 4 =
S

T 3 −
P
T 4 +

µB

T
nB

T 3 , c2
s (T,µB) =

(
∂P
∂ε

)
S/nB

. (4.3)

They are shown in Figs. 4 - 8. The effect of the critical point on the thermodynamic isentropes
(trajectories at constant S/nB in the QCD phase diagram) is shown in Fig. 9. The effect of the
critical point is clearly visible in the distortion of the isentropes at large chemical potentials. By re-
quiring thermodynamic stability, i.e. positivity of pressure, entropy density, baryon density, energy
density and speed of sound, and causality, i.e c2

s < 1, over the whole phase diagram, it is possible
to reduce the range of acceptable parameters in the non-universal Ising 7→ QCD map. By keeping
the location of the critical point fixed (µBC = 350MeV, TC ' 143MeV), as well as the orientation
of the axes (α1 ' 3.85◦, α2−α1 = 90◦), we investigated the role of the scaling parameters w, ρ .
In Fig. 10, we can see in red the points corresponding to pathological parameter choices, while the
blue dots correspond to acceptable ones. We notice that, while most commonly specific parameter
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Figure 4: Pressure after merging with HRG.

Figure 5: Entropy density after merging with HRG.

choices are unacceptable because of the negativity of nB, for very low w (w = 0.25) we observe
violation of causality as well (c2

s > 1).

5. Conclusions

We presented a family of equations of state, which match available lattice QCD results up to
O(µ4

B) and contain a critical point in the 3D Ising model universality class. These EoSs are meant
to be used as an input into hydrodynamic simulations of the system created in heavy-ion collisions.
A systematic scan of the parameter space, and relative comparison with experimental data from the
BESII at RHIC, will hopefully allow us to constrain the size of the critical region and the location
of the critical point.
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Figure 6: Baryon density after merging with HRG.

Figure 7: Energy density after merging with HRG.
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