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Critical behavior and net-charge fluctuations from lattice QCD

1. Introduction1

Understanding the phase structure of strongly interacting matter is one of the central goals in2

studies of the properties of strong interaction matter at finite temperature and density through large-3

scale numerical calculations in the framework of lattice regularized Quantum Chromo Dynamics4

(QCD). Also experimentally major efforts at the Large Hadron Collider (LHC) at CERN and the5

Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory are devoted to this6

goal.7
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Figure 1: Sketch of a possible QCD phase diagram in
the space of temperature (T ), baryon chemical poten-
tial (µB) and light quark masses (mu,d).

At vanishing net baryon-number density or,8

equivalently, vanishing baryon chemical po-9

tential (µB), it is by now well established that10

the transition from hadronic matter at low11

temperature to the quark-gluon plasma at12

high temperature is a continuous (crossover)13

transition taking place at a pseudo-critical14

temperature Tpc (for recent reviews see [1,15

2]). While this is the case for physical values16

of the quark masses, it is expected that in the17

limit of vanishing light quark masses (mu,d)18

strong interaction matter shows true critical19

behavior resulting from the appearance of20

second order phase transitions at some tem-21

perature Tc(µB). In QCD with two mass-22

less quark flavors this transition is due to23

the spontaneous breaking of the SUL(2)×24

SUR(2)'O(4) chiral symmetry [3] and per-25

sists as such also at non-zero baryon chemical potential.26

At non-zero values of the two light quark masses the transition is only a smooth crossover for27

small values of µB. At larger µB, however, it is expected that a second order phase transition arises28

at the endpoint (Tcep) of a line of first order transitions, at which the net baryon-number density29

changes discontinuously [4]. Critical behavior in the vicinity of this endpoint will be controlled30

by the 3-d, Z(2) universality class. This Ising-like transition will exist for arbitrary values of the31

light quark masses and thus will meet the O(4) chiral transition line at mu,d = 0 in a tri-critical32

point (Ttri). A sketch of the resulting phase diagram, which also indicates the relative ordering of33

the various transition temperatures, is shown in Fig. 1. This generic phase diagram, in particular34

the indicated ordering of the various characteristic (phase) transition temperatures, is in qualitative35

agreement with various model calculations [4, 5, 6].36

In the following we will present recent lattice QCD results on the pseudo-critical (Tpc) and37

critical temperature (Tc) in (2+1)-flavor QCD at µB = 0. We relate these findings to the structure38

of higher order cumulants of conserved charge fluctuations, and discuss how they constrain the39

location of a possible critical point at µB > 0 and physical values of the quark masses.40
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Figure 2: Left: The chiral susceptibility (χΣ ≡ χM) calculated on lattices with different temporal extent Nτ

for physical values of the degenerate light (u,d) and strange quark masses. Right: Crossover temperature
Tpc(µB) determined from continuum extrapolated results for the location of peaks in the chiral susceptibil-
ities defined in Eq. 2.2 and some further observables introduced in Ref. [7]. Also shown in this figure are
lines of constant energy and entropy density [8] as well as results for freeze-out temperatures determined
from data on particle yields measured by the STAR and ALICE collaborations [9, 10].

2. Universal pseudo-critical and critical behavior41

2.1 Pseudo-critical temperature in (2+1)-flavor QCD42

In the limit of vanishing up and down quark masses QCD possesses an exact global symme-43

try, the chiral SUL(2)× SUR(2) flavor symmetry. This symmetry is spontaneously broken at low44

temperature, signaled by a non-vanishing chiral condensate (〈ψ̄ψ〉). Chiral symmetry is explicitly45

broken due to the non-vanishing light quark masses. Nonetheless, this explicit breaking is small46

enough for chiral symmetry providing a good, approximate order parameter at non-zero tempera-47

ture – the chiral condensate 〈ψ̄ψ〉. Its variation with quark mass as well as temperature is large in a48

small temperature interval, which leads to well defined peaks in the corresponding chiral (χΣ) and49

mixed (χt) susceptibilities. These maxima in the susceptibilities are used to define pseudo-critical50

temperatures, which, in the limit of vanishing quark masses, converge to the uniquely defined crit-51

ical temperature for the chiral phase transition.52

For our studies of the chiral phase transition we use as an order parameter for chiral symmetry53

breaking54

Σ =
1
f 4
K
[ms (〈ψ̄ψ〉u + 〈ψ̄ψ〉d)− (mu +md)〈ψ̄ψ〉s] , (2.1)

where 〈ψ̄ψ〉 f = T (∂ lnZ/∂m f )/V denotes chiral condensates of the up (u), down (d), and strange55

(s) quarks. A fraction of the strange quark chiral condensates is subtracted from the light quark56

chiral condensates in order to eliminate ultra-violet divergences, linear in the quark masses, and the57

condensates are multiplied with the strange quark mass in order to define a renormalization group58

invariant observable. The kaon decay constant fK is used to set the scale and define a dimensionless59

order parameter Σ (sometimes also denoted as M).60

Pseudo-critical temperatures are extracted from the location of peaks in the chiral and mixed61
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Figure 3: Left: The chiral susceptibility for several values of the quark mass ratio H = ml/ms on lattices
with temporal extent Nτ = 8 and spatial lattice sizes that are varied in the range Nσ = (4− 7) when going
from the largest to the smallest light quark mass value. Right: The ratio HχM/M for H = 1/80 and Nτ = 12
for three different spatial lattice sizes Nσ .

susceptibilities62

χM = ms

(
∂

∂mu
+

∂

∂md

)
Σ , (2.2)

χt = T
d

dT
Σ . (2.3)

For different values of the lattice spacing, a= 1/T Nτ , the peak locations in different susceptibilities63

are determined. From an extrapolation to the continuum limit, that takes into account O(a2) cut-64

off effects one then determines pseudo-critical temperatures for the chiral transition. Results from65

a recent determination of pseudo-critical temperatures at physical values of the light and strange66

quark masses are shown in Fig. 2. The left hand figure shows the chiral susceptibility (χΣ ≡67

χM) calculated on different size lattices (N3
σ Nτ , with Nσ = 4Nτ ) [7] using the Highly Improved68

Staggered Quark (HISQ) action [11]. Other observables, e.g. the mixed susceptibility χt , yield69

pseudo-critical temperatures, which in the continuum limit differ from each other by less than70

2 MeV [7]. For the pseudo-critical temperature this analysis yields,71

Tpc = (156.5±1.5) MeV . (2.4)

A comparison of this pseudo-critical temperature with the freeze-out temperature determined from72

data on particle yields in heavy ion collisions at the LHC [9] suggests that the formation of hadrons73

after the cooling of the expanding hot and dense quark-gluon matter created in these collisions74

does take place close to the phase boundary characterized by this pseudo-critical temperature (see75

Fig. 2 (right)).76

2.2 Critical temperature in (2+1)-flavor QCD77

An analogous analysis can be performed for other values of the light quark masses (ml ≡78

(mu +md)/2), keeping the strange quark mass fixed at its physical value. The approach to the79

chiral limit, H ≡ ml/ms→ 0, can then be examined by monitoring the quark mass dependence of80

the chiral order parameter and its susceptibility (χM). Some results for the quark mass dependence81

3
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of χM, calculated with the HISQ action, are shown in Fig. 3 (left) [12]. For sufficiently small values82

of the light quark masses and close to the chiral transition temperature, i.e. in the scaling regime,83

the peak location in χM, and similarly in χt , is controlled by universal scaling functions,84

χM(T,H)∼ h1/δ−1 fχ(z) + regular , χt(T,H)∼ h1/δ−1/βδ f ′G(z) + regular , (2.5)

where β and δ are critical exponents for the universality class of the chiral transition, z≡ z0[(T −85

T 0
c )/T 0

c ]/H1/βδ , h = H/h0 and h0, z0 are non-universal constants. The peak locations in χM and χt86

are related to maxima of the scaling functions fχ(z) and f ′G(z), respectively. The quark mass de-87

pendence of pseudo-critical temperatures thus is controlled by the scaling variable z. The increase88

of the peaks is controlled by the prefactors. As can be seen in Fig. 3 (left) the peak in χM increases89

rapidly with decreasing quark, or equivalently pion, mass and the peak location shifts towards90

smaller values of the temperature. In the scaling regime, close to the chiral limit, contributions91

from regular terms will be small and one expects to find92

Tpc(H) = T 0
c

(
1+

zX

z0
H1/βδ

)
, (2.6)

with zX being a universal constant defining the location of the maximum in χX , e.g. X ≡ M or93

t when using the peak locations of χM and χt defined in Eq. 2.2 and Eq. 2.3, respectively. For94

the 3-d, O(4) universality class one has, zM ' 1.4(1), zt ' 0.8(2), and 1/βδ ' 0.55 [13]. As z095

typically is of O(1), Eq. 2.6 suggests that the pseudo-critical temperatures determined from the96

peak locations in χM and χt will show a rather strong dependence on the light quark masses. In97

fact, QCD-inspired model calculations [14, 15] suggest that T 0
c might be (20− 30) MeV smaller98

than Tpc calculated for physical values of the quark masses, for which H ' 1/27.99

In order to determine the chiral phase transition temperature T 0
c it thus would be advantageous100

to use observables which similarly to the maxima in susceptibilities correspond to a fixed value of101

the scaling variable z, but are related to a value z ≡ zX that is close to zero. Two such observables102

have been utilized recently [12] for this purpose. One may define two characteristic temperatures,103

Tδ and T60, through the relations104

HχM(Tδ )

M(Tδ )
=

1
δ

, (2.7)

χM(T60) = 0.6χ
peak
M . (2.8)

In the thermodynamic limit the corresponding scaling variables zδ and z60 both are close to zero.105

The resulting estimators, Tδ and T60, for the chiral phase transition temperature are quark mass106

dependent only due to the presence of contributions arising from regular terms in the partition107

function. They therefore provide good estimators for the chiral phase transition temperature. Some108

results for the ratio HχM/M, from which the estimator Tδ is extracted, are shown in Fig. 3 (right).109

When decreasing the quark masses towards the chiral limit finite volume effects increase and some110

care needs to be taken in the extrapolation to the thermodynamic limit. After (i) infinite volume, (ii)111

continuum, and (iii) chiral limit extrapolations these estimators yield for the chiral phase transition112

temperature [12]113

T 0
c = 132+3

−6 MeV . (2.9)
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Critical behavior and net-charge fluctuations from lattice QCD

The chiral phase transition temperature thus is about 25 MeV smaller than the pseudo-critical114

temperature extracted from the location of the peak in the chiral susceptibility. As will be discussed115

further in Section 3, this has consequences also for the phase transition temperature Tcep at which116

a possible critical point at physical values of the light quark masses and at non-zero values of the117

baryon chemical potential may occur.118

2.3 Curvature of the phase transition line in the chiral limit119

Close to the chiral limit, in the vicinity of the critical temperature, the non-analytic (singular)120

behavior of the logarithm of the partition function, i.e. the pressure, is described by a scaling121

function, fs(z). Deviations from scaling are given in terms of an analytic (regular) function fr,122

P
T 4 = h2−α fs(z)+ fr(T,µB,µQ,µS,m f ) , (2.10)

The reduced temperature variable t entering the scaling variable z ∼ t/h1/βδ will also dependent123

on the chemical potentials. In leading order, and for vanishing strangeness and electric charge124

chemical potentials, one has125

t ∼ T −T 0
c

T 0
c

+κ
B,0
2

(
µB

T

)2
, (2.11)

which also reflects the temperature dependence of the chiral phase transition temperature, Tc(µB) =126

T 0
c (1−κ

B,0
2 (µB/T )2).127

At physical values of the quark masses the curvature of the transition line, κB
2 , will in general128

differ from κ
B,0
2 , receiving corrections from regular terms, terms arising from universal corrections-129

to-scaling or higher order terms in the scaling variables being proportional to H(T − T 0
c ). This130

curvature term can be extracted from the µB-dependence of the location of maxima of various131

susceptibilities. Using a Taylor expansion of, e.g. the mixed chiral susceptibility χt(T,µB) in terms132

of temperature and baryon chemical potential around the pseudo-critical point (Tpc,µB = 0), one133

obtains for the curvature κB
2 [7],134

κ
B
2 =

1
2T 2∂ 2

T χt

[
T ∂T χ

′
t −2χ

′
t
]∣∣∣∣

(Tpc,µB=0)
, (2.12)

with χ ′t = T 2∂ 2χt/∂ µ2
B. Similarly one can derive expressions for higher order expansion coeffi-135

cients of Tpc(µB). The analysis performed in Ref. [7] gave κB
2 = 0.015(4) in agreement with other136

recent determinations of the leading order correction to Tpc [16, 17]. The next-to-leading order137

correction, κB
4 , is an order of magnitude smaller and consistent with zero within current statistical138

errors. The resulting µB-dependence of the crossover line for physical quark masses is shown in139

Fig. 2 (right).140

In the limit of vanishing quark mass the curvature coefficients κB
2 will approach the corre-141

sponding curvature term of the chiral phase transition line, κ
B,0
2 . In fact, in the absence of contri-142

butions from regular terms the curvature coefficient will be quark mass independent, as seen from143

the general scaling ansatz given in Eq. 2.10. To what extent this holds true may be probed by144

comparing temperature and chemical potential derivatives of P/T 4. In the absence of substantial145

5
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contributions from regular terms one expects to find in the scaling regime,146

T 2

2
∂ 2Σ

∂ µ2
B
= κ

B,0
2 T 0

c
∂Σ

∂T
. (2.13)
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Figure 4: Derivatives of the chiral order parameter
with respect to temperature and baryon chemical po-
tentials, respectively. Shown are results for Nτ = 12.

A test of this relation is shown in Fig. 4,147

where κ
B,0
2 ≡ κB

2 has been assumed. This in-148

deed suggests that the curvature of the chiral149

phase transition line is similar in magnitude150

to that of the pseudo-critical line at physical151

values of the quark masses.152

3. Higher order cumulants in the153

crossover region154

The sketch of the QCD phase diagram155

shown in Fig. 1, which qualitatively is con-156

sistent with model calculations for the quark157

mass dependence of transition lines in the158

QCD phase diagram [4, 5, 6], suggests that159

a possible critical point at physical values of160

the quark masses is located at a temperature Tcep below the chiral phase transition temperature T 0
c .161

If this is correct, it has significant consequences also for the properties of higher order cumulants162

of conserved charge fluctuations.163

Cumulants of conserved charge fluctuations, evaluated at vanishing chemical potentials (µB,Q,S),164

appear as expansion coefficients in Taylor series for thermodynamic quantities. The relative mag-165

nitude of subsequent expansion coefficients controls the convergence of these expansions and de-166

termines their radius of convergence. The pattern of sign changes in these expansion coefficients167

provides information on the location of singularities in the plane of complex-valued chemical po-168

tentials which cause the breakdown of the Taylor expansions. E.g., for a series of the form ∑x cnxn
169

the singularity determining the radius of convergence lies on the real-x axis, if an n0 exists such170

that all expansion coefficients cn are positive for all n > n0 [18] (see also discussion in [19]). Only171

in this case the radius of convergence can be unambiguously related to the existence of a phase172

transition in the thermodynamic system under consideration. One thus may examine the sign of173

subsequent expansion coefficients and their relative magnitude in order to judge whether or not174

the convergence of a Taylor series is limited by the appearance of a phase transition for some175

real-valued chemical potential.176

At small values of the chemical potentials the QCD partition function may be expanded in a177

Taylor series. E.g. the pressure can be written as178

P
T 4 =

1
V T 3 ln Z(T,V, µ̂u, µ̂d , µ̂s) =

∞

∑
i, j,k=0

χ
BQS
i jk

i! j!k!
µ̂

i
Bµ̂

j
Qµ̂

k
S , (3.1)

6
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with χ
BQS
000 ≡ P(T,0)/T 4 and µ̂X = µX/T . The generalized susceptibilities are given as derivatives179

of P/T 4 at vanishing values of the conserved charge chemical potentials,180

χ
BQS
i jk ≡ χ

BQS
i jk (T ) =

∂P(T, µ̂)/T 4

∂ µ̂ i
B∂ µ̂

j
Q∂ µ̂k

S

∣∣∣∣∣
µ̂=0

. (3.2)

If, at some value of the temperature, the radius of convergence of the Taylor series for the181

pressure arises from a singularity in the complex-µ plane, one should find that Taylor expansion182

coefficients will have an irregular sign structure, i.e. at this temperature positive and negative183

expansion coefficients will appear in the Taylor series. Such changes of sign are indeed observed for184

various cumulants of conserved charge fluctuations, starting with sixth order expansion coefficients.185

Although not rigorous in the mathematical sense stated above, these sign changes suggest that186

Taylor expansions in this temperature range are not limited by a physical singularity related to a187

phase transition, but by some singularity in the complex-µ plane.188
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Figure 5: Temperature dependence of the sixth order
expansion coefficient of the pressure in (2+1)-flavor
QCD at vanishing net strangeness and fixed electric
charge to baryon number density, nQ/nB = 0.4 [8].

In Fig. 5 we show the sixth order expansion189

coefficient of the pressure for the case of van-190

ishing net strangeness and a fixed electric191

charge to baryon-number density, nQ/nB =192

0.4 [8],193

P
T 4 = P0 +P2µ̂

2
B +P4µ̂

4
B +P6µ̂

6
B

+O(µ̂8
B) . (3.3)

While the expansion coefficients up to194

O(µ4
B) are all positive [8], the sixth order195

expansion coefficient, P6, starts to change196

sign with increasing temperature, i.e. P6 < 0197

for T>∼150 MeV. These sign changes are ex-198

pected to become more frequent and start at199

lower temperatures in higher orders of the200

expansion.201

The irregular sign structure becomes more apparent in simpler cumulants like the net up-quark-202

number cumulants, which are statistically easier to control. Up to eight order cumulants are shown203

in Fig. 6 (left). As can be seen, the sign of χu
n+2(T ) can be deduced from the temperature derivative204

of χu
n (T ), as suggested by Eq. 2.11. Similar behavior is found for the expansion coefficients of the205

quadratic net electric charge fluctuations at non-zero baryon chemical potential,206

χ
Q
2 (T,µB) = χ

BQ
02 (T )+

1
2

χ
BQ
22 (T )µ̂2

B +
1
24

χ
BQ
42 (T )µ̂4

B +O(µ6
B) , (3.4)

where, for simplicity, we have set µQ = µS = 0. The first three expansion coefficients are shown207

in Fig. 6 (right). We note that χ
BQ
42 vanishes at the temperature where χ

BQ
22 has its maximum.208

Also these expansion coefficients thus seem to be in accordance with the pattern resulting from209

Eq. 2.11 in the scaling regime, i.e. two derivatives with respect to the baryon chemical potential210

are proportional to a single derivative with respect to temperature. This leads to the expectation211

7
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Figure 6: Left: Temperature dependence of up to eight order cumulants of net up-quark-number fluctua-
tions calculated on lattices with temporal extent Nτ = 8 Right: Expansion coefficients of net electric charge
fluctuations for the case of vanishing electric charge and strangeness chemical potentials. In both figures the
lines are smooth spline interpolations drawn to guide the eye.

that the eight order cumulants, χ
BQ
62 , will be negative in the temperature range T ∈ [135 MeV :212

165 MeV]. At high temperature subsequent expansion coefficients thus show an irregular sign213

structure, which is in accordance with the expectation that for physical quark mass values a possible214

critical endpoint in the QCD phase diagram will be located at a temperature below the chiral phase215

transition temperature T 0
c .216

4. Conclusions217

New results on the chiral phase transition temperature T 0
c in (2+1)-flavor QCD suggests that218

this temperature is well below the pseudo-critical temperature Tpc at physical values of the light219

and strange quark masses. Moreover, it is found that many 6th and higher order cumulants of220

conserved charge fluctuations are no longer strictly positive but start showing an irregular sign221

structure at temperatures T>∼T 0
c . This suggests that a possible second order phase transition at222

physical values of the quark masses and for non-vanishing baryon chemical potential can occur223

only at a temperature Tcep < T 0
c , if it exists at all.224
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