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The scalar-isoscalar mode of QCD becomes lighter/nearly massless close to the chiral
transition/second-order critical point. From nuclear physics we know that this mode is the main
responsible for the attractive part of the nucleon-nucleon potential at inter-particle distances of
1-2 fm. Therefore one expects that close to the critical point there is a long-range strong attrac-
tion among nucleons. Using a Walecka-Serot model for the NN potential we study the effects of
the critical point in a finite system of nucleons and mesons by solving classical Molecular Dy-
namics+Langevin equations for the freeze-out conditions of heavy-ion collisions. Going beyond
the mean-field approximation allows us to account for strong nucleon correlations in the time
evolution, leading to baryon clustering. We observe that light cluster formation, together with an
enhancement of higher-order cumulants of the proton distribution can signal the presence of the
critical point.
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1. Motivation

In the present and past editions of the CPOD conference, have been reported many ways to
access the signatures of a possible QCD critical point (CP) by performing heavy-ion collisions at
different collision energies [1, 2]. The common origin of these proposals are the peculiarities of
the second-order phase transition happening at the critical point, and the probability distribution
function of the critical mode, the σ field [3]. In an ideal system (static and infinite) the critical
region is dominated by the large fluctuations of σ and their correlations. Because this field should
couple to the baryon number, it is a potentially good starting point to look for empirical signs of
the critical behavior [4].

A well-known proposal [5] is to look at high-order moments of the net-proton distribution,
and its related cumulants like the (scaled) skewness and kurtosis. These observables can be ex-
tracted from protons and antiprotons detected in the experiment within some particular kinematic
cut. When plotted as a function of the collision energy, theoretical predictions indicate that a non-
monotonous behavior should be expected for energies close to the critical region. Preliminary
results from STAR collaboration [6] in the context of the Beam Energy Scan (BES) program pro-
vided an interesting evidence of this behavior for protons and antiprotons with p⊥ ∈ (0.4,2.0) GeV
at midrapidity (|y|< 0.5) in the most central collisions.

These cumulants will be re-evaluated at even smaller energies with more statistics at the second
phase of the BES and FXT programs of RHIC. In addition, other detectors will also dedicate efforts
to study the physics of the critical point like the CBM experiment at FAIR, MPG experiment
at NICA and the upgraded NA61 at CERN. All these experiments will explore collisions at low
energies for which the associated baryochemical potentials are large, and the antibaryons are much
suppressed with respect to baryons. Therefore, the dynamical effects are supposed to be dominated
by the latter, like nucleons.

From the idea of measuring (net-)proton correlations we have focused our attention to the
possible modifications of their interaction (the NN potential) under the influence of the QCD CP.
The main idea of this work is the following: the attractive part of the nuclear potential at inter-
particle distances around r = 1 fm is dominated by the σ exchange, the excitation of the critical
mode. When these excitations become very light (ideally massless) close to the CP, the nucleons
will experience a stronger attraction of longer range (of the order of 1/mσ ). Therefore important
correlations between several nucleons, encoded in the higher-order cumulants, would build up close
to Tc. Even more, if the hadronic evolution spends enough time in the vicinity of critical region,
this attraction would be able to bound several nucleons and form light nuclei like 3H, 3He or 4He.
It would be very remarkable if nuclear physics is able to guide us in the search of the QCD CP.

2. Critical mode and NN interaction

The main properties of the NN potential can be described with the simple Serot-Walecka
model [7]. In this model the nuclear interaction is described in terms of isoscalar mesons ex-
changes. At short inter-nucleon distances the repulsion forbidding collapse is mediated by the
vector ω meson. At large distances the attraction due to the σ mode allows nuclear matter to be
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bound. The NN potential in this model reads,

VA(r) =−
g2

σ

4πr
e−mσ r +

g2
ω

4πr
e−mω r , (2.1)

where r is the inter-nucleon distance, and the label A denotes the use of parameters fixed at mean
field in [7]. These read mN = 938 MeV, mσ = 500 MeV, g2

σ = 267.1m2
σ/m2

N , mω = 782 MeV, and
g2

ω = 195.9m2
ω/m2

N . The NN potential presents a minimum at r∼ 0.6 fm, and it is shown in a black
solid line in the left panel of Fig. 1.
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Figure 1: Left panel: NN potential in the original Serot-Walecka model (VA) [7]; with a 40% increased
repulsion (VA′) [8]; and the Bonn potential [9]. Right panel: Different versions of the NN potential (scaled
by r3) in the vicinity of the QCD CP, where the mass of the σ mode is reduced. The definitions of these
potentials are given in Eqs. (2.3,2.4,2.5,2.6).

Our initial potential VA′ [8] has the same form of Eq. (2.1), but we do not attach to the mean-
field parameters, and increase the g2

ω coupling by 40% so that the resulting potential is more shallow
and closer to the Bonn potential [9] (see Fig. 1). Notice that when working beyond mean field one
does not require a very deep potential like VA, because many-body dynamics will generate the
necessary correlations to bound nuclear matter.

The main idea in our analysis is that the properties of the medium formed at HICs might alter
the parameters of this potential, especially close to Tc (the critical temperature). In particular, the
critical mode σ [1, 2] suffers strong modifications and its mass becomes small close to Tc,

mσ ∼
1
ξ
∼
(
|T −Tc|

Tc

)ν

, (2.2)

where ξ is the correlation length of the critical mode.
The implications of this mass reduction in the NN potential are crucial. The attraction between

nucleons gets enhanced and long ranged (to distances of the order ξ ). This attraction is not com-
pensated by a similar increase of the repulsion, and the precise cancellation between them in cold
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nuclear matter does not hold anymore. In a realistic system (with finite boundaries and a limited
influence of the critical dynamics) the mass cannot go all the way to zero, and we should only ex-
pect a moderate reduction. In the first study performed in [8] we examine several potentials, where
the σ mass is considered at most, a factor

√
6 less than its vacuum value.

In addition to the potential VA (with mean-field parameters) and VA′ (with increased repulsion)
we will consider 3 more versions, each one with more degree of criticality: VB1 is obtained from VA′

by reducing both m2
σ and g2

σ a factor 2; VB2 from VA′ by decreasing the m2
σ a factor 2 but keeping

the same coupling; and finally, a 1-parameter potential VC(x) which interpolates between VB2 and
one with a very light critical mode m2

σ → m2
σ/6,

VA′ = VA(g2
ω → 1.4g2

ω) , (2.3)

VB1 = VA′(m2
σ → m2

σ/2;g2
σ → g2

σ/2) , (2.4)

VB2 = VA′(m2
σ → m2

σ/2) , (2.5)

VC(x) = (1− x)VB2 + x VA′(m2
σ → m2

σ/6) x ∈ (0,1) . (2.6)

These potentials (multiplied by r3) are plotted in the right panel of Fig. 1. The increasing
attraction of the NN interaction is evident as long as the critical dynamics is dominating more and
more (VA′ →VB1 →VB2 →VC).

A simple preliminar calculation in a mean-field approach gives the binding energy of a nuclear
drop as a function of its size and the NN potential used. The results can be seen in [8], and they
simply confirm the expected effect: the “noncritical” potentials VA,VA′ ,VB1 cannot bound nuclear
matter of smaller size, and the bigger ones are only slightly bound. Only the most critical potentials
are able to hold these nuclear drops, even the smallest ones (cf. Fig. 3 in [8]). Nevertheless,
this calculation is not fully consistent because such a strong attraction would generate two-body
correlations, which are neglected at mean-field level. Therefore, we need to consider a many-body
approach able to describe nuclear correlations.

For this goal we solve a classical nonrelativistic Molecular Dynamics scheme [10] with a
finite number of nucleons interacting through a pairwise potential. The temperature of the system
is fixed by the light degrees of freedom (thermal bath), which we encode in a Langevin dynamics.
Therefore, in the equations of motion we include a stochastic force for the nucleons as well as a
drag force λ , proportional and opposed to the nucleon momentum,

d~xi

dt
=

~pi

mN
,

d~pi

dt
= − ∑

j 6=i

∂V (|~xi−~x j|)
∂~xi

−λ~pi +~ξi ,

(2.7)

where i = 1, ..,N, and ~ξ is the random noise following a white Gaussian distribution,

〈~ξi(t)〉 = 0 , (2.8)

〈ξ a
i (t)ξ

b
j (t
′)〉 = 2T λmNδ

ab
δi jδ (t− t ′) , (2.9)
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with a,b = 1,2,3. Making use of the fluctuation-dissipation theorem we relate λ with the variance
of the noise. In [8] we used λ = 0.256 fm−1.

Examples of cold configurations (T = 10−3 MeV) with few nucleons can serve to test the
numerical routine and check well-known expectations from symmetry arguments. For example,
for N = 4 and N = 12 the dynamics places the nucleons at the vertices of Platonic solids, viz.
tetrahedron and icosahedron. The analysis of the relative distances and angles confirm these shapes.
In the left panel of Fig. 2 we show a snapshot of the configuration of N = 4 nucleons at some
time after thermalization under the influence of VA′ . In the right panel, a probability distribution
function of the mutual distances shows the consistency with the tetrahedral configuration. The
single peak of the distribution coincides exactly with the minimum of the potential. In Fig. 3 we
repeat the calculation for a medium size system N = 13 at T = 10−3 MeV and the same potential.
The probability distribution function of distances matches exactly the icosahedral distribution (+1
particle in the center). Small temperatures still preserve the geometrical shapes but broaden the
peaks of the distributions, due to the thermal motion of the nucleons.
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Figure 2: Left panel: Cold (T = 10−3 MeV) configuration for N = 4 nucleons interacting through the
potential VA′ . Right panel: Probability distribution function of the inter-particle distances. As expected [8],
the single peak is located at the minimum of the pairwise potential.

To approach the physical scenario we run a large system with N = 128 nucleons at a tem-
perature close to freeze-out T = 120 MeV. This is a strongly correlated system where the nuclear
potential is felt by all 8256 mutual distances. The combined effect of all these interactions pro-
duces nuclear clustering after thermalization. In Fig. 4 we observe a summary of the results for
this many-body case. In the top left panel we present the “temperature” of the system versus time.
The “temperature” is a measure of the average kinetic energy per particle multiplied by 2/3, so that
in equilibrium it would correspond to the true temperature (T = 120 MeV). In the top right panel
we plot the kinetic, potential and total energies per nucleon versus time. Notice that the system
is dissipative and the total energy is not conserved. In addition, note the huge potential energy
developed in the system. In the bottom left panel we show the 3D configuration of the system, for
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Figure 3: Left panel: Cold (T = 10−3 MeV) configuration for N = 13 nucleons interacting via potential
VA′ . Right panel: Probability distribution function of the inter-particle distances. As expected [8], one finds

4 peaks at distances with ratios 1 :
√

2−2/
√

5 :
√

2+2/
√

5 : 2.

some particular time after equilibration. Clustering is evident. Finally, the internal structure of the
cluster dN/dV is shown in the bottom right panel. It resembles a shell-like structure with peaks at
regular distances from the center of the cluster. This explicitly shows that strong correlations are
generated between nucleons and a mean-field approach would be simply inadequate.

3. Higher-order (net-)proton moments and cumulants

We are ready to apply our model to a system simulating heavy-ion collision at BES energies as
measured by STAR collaboration [11]. We will consider two different kinematic cuts which have
been applied in the analyses of these data. We will denote Cut 1 as the one with rapidity |y|< 0.5
and 0.5 GeV/c < p⊥ < 0.8 GeV/c [12]; whereas Cut 2 has the same rapidity range but extends the
p⊥ coverage up to 2 GeV/c [6].

To mimic the conditions of the BES as measured by STAR we set a calculation with N = 32
nucleons in a medium at temperature T = 150 MeV (average temperature between hadronization
and freeze-out) with a baryonic density of n = 0.3 fm−3 [11, 13]. The duration of the simulation
is set to ∆t = 5 fm, which is a conservative time for low-energy collisions. We do not include the
effects of the fireball expansion in the evolution, but we perform a final mapping of the kinematic
variables to fit the experimental p⊥ and a flat distribution in rapidity. We repeat the simulation
a number of events 105 to achieve similar statistics as in experiment. For more details on these
numbers and their justification we refer the reader to our publication [8]. We use the results at
√

sNN = 19.6 GeV as a baseline for a non-critical scenario. In our simulation this is achieved by
the potential VA′ (no σ -mass modifications).

The only parameter which is not fixed a priori is N, as experimentally we only know the
average number of protons in a given kinematic cut. Focusing on the Cut 1 we compare our value
of C1 (average number of protons) and compare it to the experimental result. Then, we use the ratio

5
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Figure 4: Results of a simulation with N = 128 nucleons at T = 120 MeV. Top-left panel: “Temperature”
of the system versus time. Top-right panel: Potential, kinetic and total energies per nucleon as a function
of time. Bottom-left panel: Configuration of nucleons after thermalization. Bottom-right panel: Internal
distribution of nucleons dN/dV measured from the centroid of the cluster.

between the two to rescale all our proton moments by the same amount. Once this is done, we are
able to generate all other moments for both Cut 1 and Cut 2.

For this particular energy
√

sNN = 19.6 GeV (where no critical dynamics are expected), the
results are summarized in Fig. 5. We observe a reasonable agreement (both in the moments and
their error bars) between the experimental data and our simulations with the noncritical potential
VA′ .

Using the cumulants we can finally compute the scaled skewness (Sσ ) and kurtosis (κσ2),
defined by

Sσ =
C3

C2
, κσ

2 =
C4

C2
, (3.1)
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Figure 5: Moments of the proton distribution obtained in our simulation with a non-critical potential VA′

compared to the experimental results of STAR at a collision energy of
√

sNN = 19.6 GeV. Left and right
panels show the result for the Cut 1 and Cut 2, respectively.

and repeat our simulations using different potentials VB1 ,VB2 ,VC. To isolate the effect of the inter-
action potential, we do not modify any other parameter in the simulation. The rationale behind this
exercise is that once the proton moments for the collision energy

√
sNN = 19.6 GeV are compati-

ble with Poissonian fluctuation (no critical dynamics), there should be lower energy for which the
system evolves close to the critical point. As long as one approaches that collision energy, the NN
potential becomes more and more critical. We want to study how the higher-order cumulants are
continuously modified as long as we approach that energy. Unfortunately we cannot match each
potential with a corresponding collision energy without more modeling.
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CV
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B2V B1V AV

0

0.5

1

1.5

2

2 σ κ

 < 0.8 GeV0.4 GeV < p
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 (GeV)NNs

0

1

2

3

4

5

2 σ κ
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Figure 6: Left panel: Theoretical scaled kurtosis as a function of the NN potential. The critical enhance-
ment increases from right to left in the OX axis. Right panel: Experimental scaled kurtosis from STAR
measurements as a function of the collision energy.

The results for the scaled kurtosis are shown in Fig. 6. In the left panel we present our results
as functions of the NN potential (we approach the critical region going from right to left along
the OX axis). In the right panel we plot the experimental data from STAR at the lowest collision
energies. The numbers obtained in our simulations are realistic in spite of the crude model used.
In both panels, notice that for the Cut 1 (solid symbols) the increase of κσ2 is very mild, but in the
Cut 2 (open symbols) there is an increase of several units. Our conclusion is that (at least part of)
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the increase of the scaled kurtosis seen in experimental data is compatible with the effect of NN
potential modification close to Tc [14].

4. Light nuclei formation at the CP

If the fireball spends enough time in the vicinity of Tc it will be possible for the attractive NN
potential to bind nucleons and form nuclear clusters. While the statistical thermal model works
very nicely at high energies for particles as heavy as 4He [15], the presence of the QCD CP would
increase the multiplicity of light nuclei due to nuclear clustering.

In our simulation we look for clusters of 4 nucleons close in phase space, which are understood
as potential candidates for 4He nuclei. We have scanned the final state for isolated sets of 4 nucleons
with inter-particle distance ∆r < 2 fm and ∆p < 0.22 GeV (for each momentum component). The
number of 4-nucleon clusters per event is plotted in Fig. 7 as a function of the NN potential.
This number increases with the attraction (criticality) of the potential, up to the point in which
the attraction becomes so large for VC that nucleons start forming part of bigger clusters, in fact,
producing a decrease.
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0.4
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0.8
3−10×

ev
 / 

N
H

e
4  
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Figure 7: Number of 4-nucleon clusters per event as a function of the NN potential. The approach to the
critical region is understood as going from right to left along the OX axis. For the most attractive potentials
the number of 4-nucleon clusters actually decreases, because the nucleons are in fact contained in bigger
clusters.

The immediate global observable one would consider to test this prediction is the light-nuclei
yield with respect to the statistical thermal expectations [15] as a function of the collision energy.
A maximum of this yield at some energy would indicate a strong nuclear attraction due to the
critical point. As this overpopulation of light-nuclei is a tiny fraction of the total yield, it makes
more sense to consider ratios of light-nuclei multiplicities. For example, take the ratio [17] Nt Np

N2
d

,
which combines the yield of tritons, protons, and deuterons. Applying ideal Boltzmann statistics
this ratio produces a trivial result g = 0.29 coming from numerical factors and the spin and isospin
degeneracies,

NtNp

N2
d

∣∣∣∣
ideal gas

' g . (4.1)

with a cancellation of the nucleon-mass and temperature dependences.
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However if the interaction potential is nonneglibible, in the statistical weight one finds that the
Boltzmann factor contains 3 powers of V for triton, but only one power for each deuteron. The
ratio should be sensible to a thermal average of the NN potential,

g−1 NtNp

N2
d
∼ 〈e−V/T 〉 . (4.2)

Close to Tc where the NN potential is considerably deep the typical distances are distributed around
the minimum of the potential, where V < 0. Therefore we predict that this ratio should increase at
the critical point.

In Fig. 8 we collect preliminar results from NA49 collaboration [16] adapted in [17] and
STAR experiment [18] and plot them on the same figure. Both collaborations present a ratio which
depends on the collision energy with a maximum at some particular energy. Notice that STAR
data covers a wider range and the maximum is larger. Also notice that at the highest STAR energy
the ratio is compatible with 1, pointing to a situation in which the NN potential is negligible with
respect to the temperature. Of course, at that energy the system is known to be close to the crossover
transition and far from the possible critical point. In the context of our model it would be interesting
to explore different combinations of ratios with extra powers of the nuclear potential for example
N4HeNp/N3HeNd ∼ 〈e−2V/T 〉, or (assuming isospin symmetry) N4HeN2

p/N3
d ∼ 〈e−3V/T 〉. In these

cases the predicted effect would be more spectacular.

6 7 8 10 20 30 40 100 200 300

 (GeV)NNs

1

1.5

2

 2 d
 / 

N
p

 N t
 N

-1 g

NA49 Coll.*

STAR Coll.

Figure 8: Ratio of light nuclei as defined in Eq. (4.2) scaled down by the trivial degeneracy factor g. We have
adapted the preliminar experimental data from NA49 [16] and STAR collaborations [18]. For the former, we
use data collected in [17].

Finally, notice that what we call “clusters” are statistical correlation/association of few nucle-
ons which survive the freeze-out. Their energy has large uncertainty (proportional to Tf ) and they
might well decay into N unbound nucleons at the post-freeze-out stage. Experimental evidence for
cluster formation should come from the observed multiplicity distribution of light nuclei in low-
energy heavy-ion collisions, at much lower temperatures (cf. Fig. 8). How many of our clusters
can feed down the final light-nuclei yield is the subject of an on-going work.
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5. Conclusions

In our work [8] we have studied the influence of the critical behavior of the σ field on the NN
potential, and its implications on the dynamics of nucleons in baryon-rich heavy-ion collisions. We
have observed that the attractive part of the nuclear potential gets enhanced, and strong nuclear
correlations build up during the transit of the fireball close to the QCD CP.

Although the expansion of the system and its limited time evolution tend to diminished this
effect, we have obtained that for the experimental conditions of the STAR experiment in the context
of the BES program, this nuclear attraction generates an increase at midrapidity of the higher-order
proton cumulants, like the scaled kurtosis.

A second implication of the NN potential modification is the increase with respect to the ther-
mal equilibrium of the yields of light nuclei, such as d, t, 3He, 4He, for the collision energies where
the system evolves close to the critical region. While preliminary results from NA49 and STAR
collaborations have shown such an increase for some multiplicity ratio involving triton, deuteron
and proton yields, here we propose to measure alternative ratios where the effect of the modified
potential is larger, for example, involving the 4He yield, like N4HeNp/N3HeNd or N4HeN2

p/N3
d .
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