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1. Introduction

The detection of the QCD critical point, remnant of the chiral transition at high tempera-
tures and finite chemical potential, is the highest priority goal of recent, current and forthcoming
ultra-relativistic ion collision experiments. So far, due to the well known sign problem, Lattice
QCD calculations do not provide an unambiguous result for its existence and location. Thus,
phenomenological procedures which could guide the systematic approach to the critical point, ex-
ploiting experimental data, are very welcome. Such a strategy is developed in this work. It is based
on theoretical arguments, suggesting that the QCD critical point appears as the endpoint (at low
baryochemical potential) of a continuous line of first order transitions, belonging to the 3d-Ising
universality class [1]. Having fixed the universality class the next important step is the determina-
tion of the associated order parameter. The chiral condensate or sigma field σ = 〈q̄q〉 plays this
role, however, it is not directly observable in ion collision experiments. Since the strong interaction
mixes σ with protons, the critical fluctuations of the former are transferred to the proton density
[2] as well. Thus, proton density fluctuations contain a critical sector and due to net baryon conser-
vation they form the slow component in the dynamics of the QCD order parameter [3]. Combining
the knowledge of the universality class (3d-Ising) and the suitable order parameter (proton den-
sity) with the fact that the effective action describing the critical thermodynamics of the 3d-Ising
magnet is accurately calculated [4], one can obtain a free-energy for the proton density close to the
QCD critical point [5]. Furthermore, employing this free energy and the associated, Ising model
based, QCD partition function ZIQCD, one can calculate a set of quantities with a characteristic
behaviour when approaching the critical point. From experimental point of view a very interesting
and easily accessible quantity is the second factorial moment of protons F2(M) calculated in M2

small cells partitioning the associated transverse momentum space. When the protons are produced
from a fireball freezing out close enough to the critical point, so that finite-size scaling (FSS) ap-
plies, then the corresponding F2(M) attains a power-law form F2(M)∼M2φ2 with φ2 determined by
the isothermal critical exponent δ of the 3d-Ising ferromagnetic transition [6]. This effect, called
intermittency, is the analogue of critical opalescence in microscopic physics involving particle pro-
duction. The gradual destruction of this power-law, as the produced fireball freeze-out state departs
from the immediate neighbourhood of the critical point, can be used as a tool to detect the proximity
to the QCD critical point. In the next sections we will describe how this can be realized in practice.
Our analysis shows that the critical region is very narrow along the baryochemical potential (µ)
and temperature (T ) directions which disfavours its search using wide ranged beam energy scans
with fixed size colliding nuclei. Furthermore, we will exploit existing measurements of F2(M) for
protons produced in central Si+"Si" collisions at 158A GeV (NA49 experiment, SPS, CERN) to
estimate the critical point location and predict the existence of critical fluctuations in peripheral
Ar+Sc collisions of the NA61/SHINE experiment (SPS, CERN) at highest colliding energy (150A
GeV).

2. Ising-QCD thermodynamics in the critical region

In this section our goal is to construct first a free-energy for the description of the proton fluid
thermodynamics close to the QCD critical point. Starting point is the 3d-Ising effective action Se f f
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for the order parameter φ in the critical region [4]. The field φ is given as φ = β 3
c lim

δV→0

n↑−n↓
δV

where n↑ (n↓) is the number of spins in the up (down) direction within a space cell of volume δV ,
while βc is the inverse temperature, used to make φ dimensionless. Thus, in dimensionless form
Se f f is written as:

Se f f =
∫

V
d3x̂
[

1
2
|∇̂φ |2 +U(φ)− ĥφ

]
U(φ) =

1
2

m̂2
φ

2 + m̂g4φ
4 +g6φ

6 (2.1)

with x̂ = xβ−1
c the spatial coordinate, m̂ = βcm = βcξ−1 the inverse correlation length (ξ ) and

ĥ = hβ−1
c the ordering field, made dimensionless through the length scale βc. The dimensionless

constants g4 ≈ 0.97, g6 ≈ 2.1 are universal in the 3d-Ising class. The temperature T enters in
eq. (2.1) through the correlation length ξ given as ξ = ξ0,±|1− T

Tc
|−ν with ξ0,± non-universal but

with a universal ratio ξ0,+
ξ0,−

= 2. Notice that for the 3d-Ising ν = 2
3 . The corresponding partition func-

tion Z is obtained summing over small wavelength configurations {φ} as Z = ∑
{φ}

exp(−Se f f [φ ]).

To construct the Ising-QCD partition function in the critical region we have to map the 3d-Ising
variables to the corresponding variables of QCD. This is straightforward for the order parameter
using the map: (n↑,n↓) =⇒ (nB,nB̄) with nB (nB̄) the number of baryons (antibaryons) with the cell
δV . To complete the mapping, one has to determine the relation between the 3d-Ising variables
(h,T ) and the QCD thermodynamic variables (µ,T ) (where µ is the baryochemical potential). In
general this mapping is not uniquely determined [7]. In fact one can write:

h → (µ−µc)− tanα(T −Tc)

ξ → ξ0,±|
T
Tc
−1+ tanα

(µ−µc)

Tc
|−ν (2.2)

with α a free parameter. Here we will focus on the case α = 0. However, the obtained results are
robust and remain practically unchanged up to α ≈ 60o. Only for α ≈ 90o occur some peculiarities
which will be discussed later on.

Following [2] we adopt the scenario that proton density fluctuations have a similar description
as in eq. (2.1). Then, using constant configurations for the field φ =

Np
V (Np is the number of

protons) we can write the Ising-QCD partition function for the protons, within the critical region,
as:

ZIQCD =
Λ

∑
N=0

ζ
N exp

[
−1

2
m̂2 N2

Λ
−g4m̂

N4

Λ3 −g6
N6

Λ5

]
(2.3)

We use the notation ζ = exp[(µ−µc)βc] and Λ =
V
V0

, where V0 is the volume of a single proton.

Having determined ZIQCD we can use it to:

• Calculate proton multiplicity moments 〈Nk〉 (k = 1,2, ..) and check if they follow a power-
law, as a function of the system’s size, with critical exponents compatible with the 3-d Ising
universality class. In particular, we can also consider the variation of the dependence of the
multiplicity moments on system’s size, as the distances form the critical point muB−µc and
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T − Tc increase. This could provide us with information related to the size of the critical
region.

• Calculate thermodynamic response functions like specific heat, susceptibility, etc. And, fi-
nally,

• determine the equation of state, calculating the pressure, in the neighbourhood of the critical
point.

In the next section we will focus on the first of these tasks.

3. Finite-size scaling, proton multiplicity moments and intermittency

We first calculate the proton multiplicity moments 〈Nk
p〉 using the partition function (2.3). To

simplify the notation we use N instead of Np in the following. Exactly at the critical point (µ = µc,
T = Tc) we find:

〈Nk〉 ∼ Λ
kq, q = dF/d, k = 1,2, .. (3.1)

This result can be understood in terms of finite size scaling (FSS). The finite critical system is
characterized by proton density fluctuations forming a fractal set with dimension dF = 5

2 embedded
in the three dimensional space. the FSS exponent q is related to the isothermal critical exponent δ

[5]:

q =
dF

d
=

δ

δ +1
; δ = 5 (3d− Ising) (3.2)

Thus, a measurement of q corresponds to a measurement of δ . However, it is unrealistic task to
perform this measurement guided by equation (3.1) since in this case one needs systems of different
sizes freezing out at the critical point.

Nevertheless, since in the FSS regime the local scaling:

〈n(x)n(x′)〉 ∼ |x−x′|−(3−dF ) (3.3)

is valid also globally (|x−x′|=O(V 1/3)), a large distance singular behaviour of the density-density
correlator 〈N〉 ∝ Λ

dF
3 is established. This singular behaviour is transferred to the density-density

correlation in proton transverse momentum space, for small momentum differences [8]:

lim
k→k′
〈n(k)n(k′)〉 ∼ |k−k′|−2q ; q =

dF

3
=

5
6

(3.4)

Such a singularity is detectable through intermittency (critical opalescence) in proton transverse
momentum space [6] allowing the measurement of q and therefore also the measurement of the
isothermal critical exponent δ [8]!

Another quantity which is related to proton multiplicity moments and it is widely used in the
search of the critical point is the non-Gaussian kurtosis, defined as:

κnG =
C4−3C2

2

C2
2

; Ck = 〈(N−〈N〉)k〉, k = 2,3, .. (3.5)

3
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Figure 1: The left plot shows κnG(lnζ ) for t = 0. The right plot shows κnG(t) for lnζ = 0.

It is argued that κnG possesses a non-monotonic behaviour attaining a negative minimum when
crossing the critical point [9, 11]. One can use ZIQCD to calculate the proton multiplicity cumulants
Ck and κnG through the relations:

∂ 2

∂ (lnζ )2 lnZIQCD =C2 ;
∂ 4

∂ (lnζ )4 lnZIQCD =C4−3C2
2 (3.6)

and explore their behaviour close to the critical point. The result of this calculation is illustrated in
Fig. 1.

In the left plot we show κnG versus lnζ around the critical point (lnζ = 0) while in the right
plot we show the function κnG(t) around t = 0, with t the reduced temperature t = T−Tc

Tc
. We clearly

observe the emergence of a sharp, negative minimum close to the critical point. In the next section
we will use this behaviour to determine the size of the critical region.

4. Size of the critical region

In this section we estimate the size of the critical region using two different approaches: (i)
exploring the gradual destruction of the FSS law 〈N〉 ∼ Λ

5
6 (see eq. (3.1) when departing from

the critical point (ζ = 1, t = 0) and (ii) estimating the region in the (lnζ , t)-plane, for which κnG

becomes negative.
We present first a plot (see Fig. 2) demonstrating the destruction of the FSS law which occurs

when (ζ , t) depart from the critical values (1,0).

4
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Figure 2: The left plot shows 〈N〉 for different values of lnζ and t close to the critical point (0,0). The right
plot is the same as the left plot in double logarithmic scale.

The right plot is the same as the left plot in double logarithmic scale. It clearly demonstrates
that in a region close to (1,0) a modified power-law:

〈N〉 ∼ Λ
q̃ (4.1)

is holding. When q̃ becomes 1, the scaling valid for conventional systems is established, while
when q̃= 3

4 , the scaling behaviour is that of the mean field theory (δ = 3). Thus, a reasonable choice
for the definition of the critical region is the subspace of the (lnζ , t)-plane for which 3

4 < q̃ < 1 is
valid. This condition restricts significantly the size of the critical region along the baryochemical
direction leading to ∆µ ≈ 5 MeV [5] assuming a critical temperature Tc ≈ 160 MeV. The later is
compatible with recent Lattice QCD results [12]. In Fig. 3 we show the critical (red shaded) region
in the (lnζ , t) plane, estimated with the condition 3

4 < q̃ < 1. In the plot the grey point is the critical
one with coordinates (0,0). We add in the plot the blue line consisting of (lnζ , t)-pairs which lead
to a scaling compatible with eq. (4.1) for q̃ = 0.96. The reasons for adding this line will be clarified
later in this work.

A strong restriction along the t-direction occurs when we require additionally the validity of
FSS: ξ∞ > V 1/3 with ξ∞ = ξ0,±|T−Tc

Tc
| the infinite system correlation length and V the volume of

the finite system. For medium size nuclei (20 < A < 50) we find 3 MeV < ∆T < 5 MeV for the
extension of the FSS region along the temperature axis [10].

We consider now an alternative way to define the size of the critical region, determining the
region of the (lnζ , t) plane which leads to negative values for κnG. We use the opportunity to check

5



P
o
S
(
C
O
R
F
U
2
0
1
8
)
1
7
8

FSS, intermittency and QCD CEP Fotios K. Diakonos

Figure 3: The critical region (red shaded area) in the (lnζ , t) plane determined through the condition 3
4 <

q̃ < 1.

also the impact of α in the map (2.2). The results of these calculations are given in Fig. 4 where the
red shaded area displays the critical region estimated through the negativity of κnG while the blue
shaded region shows the corresponding result using the condition 3

4 < q̃ < 1. For α = 0 (left upper
plot) the two methods lead to very similar results. A slight difference is observed for α = 45o (right
upper plot) which is significantly increased for α = 93o (lower plot).

We define as critical region the cut between the two sets. According to this definition the
critical-region size along µ is 3 MeV ≤ ∆µ ≤ 11MeV for all values of α [10]. This results dis-
favours the search for the critical point using ion collisions with fixed size nuclei colliding with
energy varying in large steps [11].

5. Locating the CEP

In this section we show how the theoretical framework described previously, combined with
the intermittency analysis results and knowledge of (µ,T ) for the fireball’s freeze-out state, enables
to locate the critical point in the (µ,T )-plane. The key observation in this approach is that the
final state created in Si+"Si" central collisions at

√
s = 17.2 GeV lies within the critical region

since the associated intermittency analysis gives q̃ ≈ 0.96 [13]. Thus, the freeze-out parameters
(µSi,TSi) for Si+"Si" should lead to (lnζ , t) values lying on the blue line in Fig. 3. In fact both,
the q̃ measurement as well as the estimation of (µSi,TSi) [14], contain large errors giving to the
subsequent treatment mainly indicative character. To proceed, we are going to neglect all these

6
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Figure 4: The critical region for various values of α calculated with two methods: (i) as the (lnζ , t) subspace
for which 〈N〉 ∼ Λq̃ with 3

4 < q̃ < 1 (blue shaded region) and (ii) the (lnζ , t) domain for which κnG < 0 (red
shaded region). In the upper left plot α = 0o, in the upper right plot α = 45o and in the lower plot α = 93o.

errors and therefore the obtained qualitative results should be considered with caution. Given Tc,
the line q̃= 0.96 determines µc, provided that the values (µSi,TSi) are known. Here we use Tc = 163
MeV which is compatible with the Lattice QCD estimation in [12] and (µSi,TSi) = (260,162.2)
MeV, being the central values obtained in [14], which lead to lnζSi = 0.0143 for locating the
Si+"Si" freeze-out state on the blue line of Fig. 3. This in turn leads to µc = 257.7 MeV.

Using for the critical point location the values (µc,Tc) = (257.7,163) MeV it is possible to
make some predictions concerning the intermittency results (φ2 or q̃ measurements) expected for
Ar+Sc system in NA61/SHINE experiment. To achieve this we need the corresponding freeze-out
parameters (µArSc,TArSc). They can be estimated with the help of the NA49 freeze-out parameters
for the C+C, Si+"Si" and Pb+Pb systems (central collisions at

√
s = 17.2 GeV) given in [14],

employing a suitable parametrization for the functions T (A) and µ(A) with A the mass number of
the colliding nuclei. In Fig. 5 we show the results for such a procedure, described in detail in [10].

For central collisions at
√

s = 17.2 GeV, we find (µArSc,TArSc) = (258,160.9) MeV and
(µXeLa,TXeLa) = (251,158.2) MeV . One could now try to place these freeze-out states on the
critical region plot of Fig. 3. Due to the narrowness of the critical region only the Ar+Sc system
fits in this plot. The enriched diagram of the critical region is shown in Fig. 6. We observe that the
fireball formed in central Ar+Sc collisions lies close but outside of the corresponding FSS region
within a distance of ∆T ≈ 1 MeV along the temperature axis. This opens up the perspective that
the freeze-out states of peripheral Ar+Sc enter into the FSS region.

7
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Figure 5: The functions T (A) and µ(A) for central A+A collisions at
√

s = 17.2 GeV colliding energy. The
values for the NA49 systems (C, Si, Pb) are obtained from [14] while those of the NA61/SHINE systems
(Be, Ar, Xe) are obtained by a suitable interpolation.

6. Conclusions

Summarizing our results, we have found that:

• Critical (FSS) region is very narrow (5− 10 MeV) along the µ and the T axis. This makes
very unlike the approach to the critical region with beam energy scan involving fixed size
nuclei and large energy steps.

8
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Figure 6: A sketch of the critical region (red shaded area) in the (lnζ , t) plane as in Fig. 3, enriched with the
freeze-out states of Si+"Si" (NA49 experiment) and Ar+Sc (NA61/SHINE experiment) produced through
central collisions at

√
s = 17 GeV.

• Ignoring errors the freeze-out state of central Si+Si collisions at
√

s = 17.2 GeV lies within
the critical (FSS) region. This is an important result of NA49 experiment (SPS, CERN)
which can be used as a guide for detecting the QCD critical point.

• A promising strategy for the detection of the critical point is to combine accurate measure-
ments of FSS exponent q̃ (intermittency analysis) and corresponding freeze-out parame-
ters (µ,T ) in central A+A collisions with 25 < A < 50 and in peripheral collisions with
32 < A < 50.

• The collision energy
√

s≈ 17 GeV seems to be the appropriate for approaching µc. Periph-
eral collisions can be used for fine changes in T allowing the entrance into the FSS region.

As a consequence we predict strong intermittency effect in peripheral Ar+Sc collisions at√
s≈ 17 GeV (NA61/SHINE experiment) [10].
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