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We demonstrate the use of Event Shape Sorting in femtoscopy. The method allows to select events
with similar distributions if hadrons in azimuthal angle. We show that also their correlation radii
exhibit interesting dependence on azimuthal angle with anisotropies of different orders visible
at the same time. We further demonstrate such features of the hadron distribution which can be
hardly recognised by Event Shape Engineering, but shows up in Event Shape Sorting. Finally, the
influence of statistical fluctuations on sorting is investigated.
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1. Motivation

Every event in ultrarelativistic heavy-ion collisions starts from different initial conditions and
evolves differently, even if we look at fixed collision energy and into a narrow centrality class.
Selection of events with similar evolution may be useful in comparisons with theoretical simula-
tions. In this talk we advocated the use of recently proposed method of Event Shape Sorting (ESS)
[1] in femtoscopy. As we will show, this would allow to observe an azimuthal dependence of the
correlation radii which exhibits harmonic oscillations of both second and third order at the same
time.

Following the discussions after this paper was presented at the conference, we were prompted
to investigate two very relevant questions. Firstly, what is the prospect of using Event Shape Sorting
over the well known and clearly user-controllable method of Event Shape Engineering (ESE) [2]?
One could expect, that any feature in the final state distribution of hadrons could be focussed on
within ESE. Then, with ESE one could do anything that can be done with ESS and the key would
be just in proper choice of the selection variable. In order to demonstrate that there is an added
quality in Event Shape Sorting, we shall construct a selection of events where ESE would fail in
differentiating the events while ESS works.

Secondly, we looked at how statistical fluctuations influence the sorting of events resulting
from the ESS algorithm. We investigated this on simulated data where we split all hadrons within
one event into one part on which sorting was performed, and another one, on which the measure-
ments were done. Unfortunately, the signal becomes weaker even in the clearest cases where events
of clearly different shapes have been sorted. The issue remains open and should be investigated
more closely in the future.

2. Anisotropy of hadron distribution and femtoscopy

Hadron production is characterized by the emission function S(x, p), which is the Wigner
phase-space density, which describes the production of a hadron with momentum p from the space-
time point x. The single-particle spectrum P(p) is then obtained as

1
E

d3N
dp3 = P(p) = P(pt ,φ ,y) =

∫
d4xS(x, p) . (2.1)

Its azimuthal dependence can be decomposed into Fourier series, with coefficients expressed as

vn(pt) =

∫ 2π

0 P(pt ,φ) cos(n(φ −θn))dφ∫ 2π

0 P(pt ,φ)dφ
, (2.2)

where we suppressed the dependence on y.
The correlation function in femtoscopy is defined as a ratio of two-particle distribution and the

product of single-particle spectra. It can be calculated via

C(q,K) =
d6N

dp3
1dp3

2
≈ 1+

|
∫

d4xS(x,K)exp(iqx)|2

(
∫

d4xS(x,K))2 , (2.3)
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Figure 1: Relation of out-side-long coordinates (fixed to the particle pair) to Cartesian coordinates fixed to
the fireball. The fireball is plotted with green line, Cartesian coordinates with black and osl coordinates with
red lines. The osl system is rotated by an angle φ with respect to the fireball-fixed frame.

where K = 1
2(p1 + p2) is the average momentum and q = p1− p2 is the momentum difference of

a particle pair. The correlation function can often be approximated by a Gaussian form depending
on three components of q

C(q,K)−1 = exp
(
−R2

oq2
o−R2

s q2
s −R2

l q2
l −2R2

osqoqs−2R2
olqoql−2R2

slqsql
)
. (2.4)

Here, R2
i are the correlation radii, which carry information about the size of the homogeneity re-

gions within the fireball. The subscripts o, s, l refer to out-side-longitudinal coordinate frame, as
explained in Figure 1.

The dependence of the correlation radii on the azimuthal angle of the particle pair can also be
decomposed into Fourier series

R2
i (φ) = R2

i,0 +R2
i,2 cos(2(φ −φ2))+R2

i,3 cos(3(φ −φ3)) , (2.5)

where we only include terms which are customarily fit to data.

3. Event Shape Sorting

Event Shape Sorting is an algorithm which sorts events according to the shapes of their his-
tograms [1]. The algorithm itself is lead by the most prominent features of the histogram. It does
not need to be given the quantity according to which the sorting should happen. For example, it
would not average out the third-order anisotropy by selecting events just according to second-order
anisotropy. Hence, in the sorted event classes, both second and third-order anisotropies can be
seen.

In order to avoid that two similar events are evaluated as different only because they are rotated
with respect to each other, events are all aligned so that the vector ~q2 = (∑i cos(2φi),∑i sin(2φi))

always points in the same direction.
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The algorithm runs iteratively. First, we sort events according to the size of q2. (Note that the
results usually do not depend on how this initial sorting is done.) All events are divided into ten
event classes which are the deciles of the actual sorting. Particles of each event are distributed into
angular bins. Each event is then characterised by the record {ni} of the numbers of particles in all
bins of azimuthal angle. The iteration steps are as follows:

1. The probabilities are calculated that within the µ-th event class a particle belongs to i-th
azimuthal angle bin

P(i|µ) =
∑ j,events in µ−th class(ni) j

∑ j,events in µ−th class N j
, (3.1)

where (ni) j is the number of hadrons in i-th azimuthal angle bin of event j and N j is the total
multiplicity of event j.

2. For each event j and every event class µ the probabilities are obtained that the event has been
randomly drawn from the event class µ

P(µ|{ni} j) =
∏

k
i=1 P(i|µ)(ni) j

∑
ω

µ ′=1 ∏
k
i=1 P(i|µ ′)(ni) j

, (3.2)

where k is the total number of azimuthal angle bins and ω the number of event classes.

3. From these probabilities, the mean event class number µ̄ is calculated for every event j

µ̄ j =
ω

∑
µ=1

µP(µ|{ni} j) . (3.3)

4. In the fourth step, all events are sorted according to their values of µ̄ j. If the order of events
changes, then another iteration is made; otherwise the algorithm converged.

4. Femtoscopy of similar events

We applied Event Shape Sorting in sets of artificially generated events. After the sorting we
investigated integrated v2, v3, as well as the angular dependence of the correlation radii in each
event class separately. Correlation functions were calculated from the generated events with the
help of CRAB [3]. They were subsequently fitted with Gaussian and the correlation radii were
extracted.

Three different samples of events were studied:

DRAGON is a Monte Carlo event generator based on a blast-wave model with included reso-
nances and fireball anisotropy [4]. We generated 150 000 events with both second and third
order anisotropy in shape and flow, parametrised as a2,ρ2 ∈ (−0.1;0.1), a3,ρ3 ∈ (−0.03;0.03).

AMPT-RHIC is a sample of 10 000 events simulated by AMPT [5] for Au+Au collisions at the
energy

√
sNN = 200 GeV, impact parameter 7-10 fm.

AMPT-LHC is a sample of 10 000 events from AMPT [5] for Pb+Pb collisions at the energy
√

sNN = 2760 GeV, impact parameter 7-10 fm.
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After the sorting we fit the angular distribution of all charged hadrons in each event class with
the prescription

f (φ) = a(1+2v2 cos(2φ)+2v3 cos(3φ −3θ3)) , (4.1)

then we obtain average values of v2 and v3 for each class (Figure 2 top). Note that are rotated so
that the angle of the second-order event plane θ2 vanishes. We can see, how coefficients v2 and
v3 evolve between classes. In the bottom panels of Figure 2 we further show v2 and/or v3 together
with µ̄ for every event, thus demonstrating the distribution of vn’s within the event class. These
plots show us nicely, that the result of ESS is in general strong v2 dependence in the first half of
events and v3 overgrowing v2 in last class.

We further calculated correlation radii in each event class and fitted their azimuthal angle
dependence with the prescription (2.5). In order to scale out the absolute value of the correlation
radii, we use relative Fourier coefficients in form (R2

i )n/(R2
i )0. They are shown for each event

class in Figure 3. On these plots we can see that different event generators simulate fireballs with
different space-time characteristics. The behaviour also changes within AMPT when the energy is
changed. Note that the method allows to see both second and third order oscillation at the same
time in the azimuthal angle dependence of the correlation radii. Such a feature could hardly be
observed with Event-Shape Engineered [2] events. While in the classes with small µ̄ the second
order is dominant, in the last class third order again tops up the second order.

5. A comparison of Event Shape Sorting with Event Shape Engineering

There is a different paradigm behind ESS and ESE. In ESE one specifies the sorting variable
according to which the selection of events is done. On the other hand, ESS by itself picks the most
prominent features of the histograms when it sorts them. One might expect that ESE can do the
same job provided that the right variable(s) is (are) chosen by the user. Here we present a counter-
example: a sample of events where the structure would be hardly recognised by ESE, while ESS
resolves the structure. The setup of the events is somewhat artificial, but it demonstrates that in
principle there is an application where ESS is the superior method.

The general idea is to look at the correlation between the second order event plane and the
third order event plane. This is determined by the mean value over a large number of events, which
for uncorrelated event planes assumes the value〈

ei{θ2−θ3}min
〉
=

∫
π

0 dθ2
∫ 2π

3
0 dθ3ei{θ2−θ3}min∫

π

0 dθ2
∫ 2π

3
0 dθ3

=
1

2π2

3

∫
π

0
dθ2

∫ 2π

3

0
dθ3ei{θ2−θ3}min =

3
π
. (5.1)

Note that the same direction of second order event plane is described with two possible values of
θ2 (which differ by π) and analogically the third order event plane by three values of θ3 (which
differ by 2π/3). Therefore, we indicate that the smallest difference between θ2 and θ3 is always
taken in the calculation. Thus the uncorrelated event planes show up as non-vanishing value of〈
ei{θ2−θ3}min

〉
!

The trick is that the same value of the correlator can be obtained with event planes which only
differ by one of two possible values. If we denote them δ1 and δ2, then we need〈

ei{θ2−θ3}min
〉
=

1
2

(
eiδ1 + eiδ2

)
=

3
π
. (5.2)
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Figure 2: Top panels: Coefficients v2 and v3 of average histograms for three different samples of events.
Bottom panels: Dependence of coefficients v2 and v3 of all events on mean class number. We use negative
vn instead of a shift of the corresponding event plane by π

n .

Since the value is real, we must have δ1 =−δ2 = δ and

cosδ =
3
π
. (5.3)

Thus δ = 0.301374. Hence, if among events with uncorrelated event planes there would be an

5
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Figure 3: Second (upper row) and third (lower row) order Fourier coefficients scaled by zeroth-order coef-
ficients of the correlation radii R2

o and R2
s , for sorted event classes.

admixture of those with θ2−θ3 =±δ (both signs equally populated), such an admixture would get
unnoticed. One would then not see a reason why to further study the correlation between the event
planes and ESE would not recognise the feature if it is not explicitly set to measure it.

To illustrate this, we generated data with such a correlation included. We created four sets of
data with different proportion of events with correlated event planes: 10%, 30%, 60% and 100%.
For events with correlated event planes the angle θ2 is generated at random and θ3 = θ2 ± δ .
The events are generated with DRAGON. We always generated 100 000 events with a2 ∈ (0;0.1),
a3 ∈ (0;0.03), ρ2 ∈ (0;0.1), ρ3 ∈ (0;0.03), and with resonances. Notice that the anisotropies by
themselves fluctuate from event to event. For these data, we use both ESE with sorting according
to q2 and also ESS, in order to see differences in the results that each algorithm obtains.

In Figure 4 we see the average histograms of azimuthal angles after sorting with both algo-
rithms. To better see the difference between results from ESE and ESS, we only plotted here his-
tograms from samples with 100% correlated event planes. Clearly, ESE does not take into account
third-order anisotropy, so we can not observe this anisotropy in the sorted events. In histograms
obtained with ESS, a combination of both orders of anisotropy is clearly visible.

After sorting the events, we have fitted the histograms of each event with Eq. (4.1). Obviously,
when fitting with such a function, it is possible to reproduce the shape either by taking into account
the negative values of v3 or by moving the angle θ3 by π

3 . Both options mean that the third Fourier
term switches the sign. Therefore, we take into account only the positive values of v3 and thus the
angle θ3 is from interval (0; 2π

3 ). For the ESS algorithm, the dependence on the mean class value µ̄

is used here. The ESE algorithm does not have class definition, so we simply took the dependence
on the event’s number.
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Figure 4: Average histograms for individual classes after use of ESE (upper plot) and ESS (lower plot)
algorithm for data sets with 100% correlated event planes.

In Figures 5-7 we can see the results of this fit. They demonstrate the advantage of using ESS.
Even in data set with 100% correlated event planes, the ESE method can not find this correlation.
To see which events are correlated, we tagged them with red points. This allows us to see how these
events are distributed between classes. While v2 is well recognised by ESE (Fig. 5), the method
remains blind to v3 since it was not set to look for it. ESS selects events with dominant v3 in the
classes with large µ̄ (Fig. 6). Recall, however, that the decisive feature was the correlation of event
planes. This is recognised by ESS without pre-setting the algorithm in any way (Fig. 7). ESE
misses the feature completely.
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Figure 5: Amplitude of second order anisotropy v2 depending on the class number obtained by fitting
histograms of individual events. The left column shows the results using ESE, the right column shows
results for ESS. Each row shows results of data set with 10%, 30%, 60% and 100% correlated event planes.
Correlated events are tagged with red points.
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Figure 6: Amplitude of third order anisotropy v3 depending on the class number obtained by fitting his-
tograms of individual events. The left column shows the results using ESE, the right column shows results
for ESS. Each row shows results of data set with 10%, 30%, 60% and 100% correlated planes. Correlated
events are tagged with red points.
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Figure 7: The angle of rotation of the third order plane θ3 depending on the class number obtained by
fitting histograms of individual events. The left column shows the results using ESE, the right column shows
results for ESS. Each row shows results of data set with 10%, 30%, 60% and 100% correlated event planes.
Correlated events are tagged with red points.
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5.1 Statistical fluctuations

The ESS algorithm always finds some order among the events. This raises a question how
statistical fluctuations influence the sorting and whether they can be filtered out. The usual method
of taking this into account in ESE is to perform the selection of events with only a subset of particles
in each event and then doing the analysis on a different subset. We therefore tested this method
also with ESS.

This was done with three sets of simulated data:

uRQMD [6, 7] simulated 100,000 events of Au+Au collisions, impact parameter b ∈ (7;10) fm,
√

sNN = 200 GeV

DRAGON with the same settings as in the previous section

AMPT simulated 10,000 events of Au+Au collisions, impact parameter b ∈ (7;10) fm,
√

sNN =

200 GeV

We have split the particles according their rapidity into reference particles and test particles:
those with |y| < 0.4 belong to reference and those with 0.5 < |y| < 0.8 to test. We run ESE on
reference particles and ESS on their histograms. Then we look at elliptic flows of the test particles
(but also reference particles to see the difference). This process can very well test the ESS algorithm
and show if the results it obtained are not just statistical fluctuations. The result of this exercise is
shown in Figure 8.

It is seen on the sample of reference particles that ESE sorted the event according to v2. This
sorting is projected on the test particles in case of DRAGON-generated events, but not so clearly
in case of events generated by the transport models. This is somewhat surprising to us and should
be investigated in the future. On the other hand, ESS does not even clearly show the sorting with
the reference particles, it thus seems that it either picks also different features of the events, or the
statistics is too low to obtain a reasonable result. This is a bit puzzling, since in all other cases
ESS worked pretty well. Consequently, no good sorting cannot be observed on the test particles.
Clearly, this unsatisfactory result needs further attention and will be resolved in the future.

6. Conclusions

Event Shape Sorting can help to select events with similar shapes. It is interesting to apply
the method also in femtoscopy and thus obtain more complex azimuthal angle dependence of the
correlation radii, where both second and third order anisotropies are seen in the same data. This
was not possible so far, since one of the orders is always averaged out after the alignment of events
with respect to a selected event plane. One could then better tune simulations in order to reproduce
these results.

We have also shown the advantages of ESS against ESE. Not only that ESS takes into account
third-order anisotropy, which ESE can not, but it can also find out some informations which can not
be found using ESE. This was demonstrated on a specially constructed correlation of the second
and third order event plane.
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Figure 8: Amplitude of second order anisotropy v2 depending on the class number obtained by fitting
histograms of individual events. The left column shows the results form uRQMD, the middle column shows
results for DRAGON and the right column shows results for AMPT. The upper plots are sorted using ESE,
the lower plots are sorted using ESS, in the first and third rows reference histograms are plotted and in the
second and fourth rows test histograms are plotted.

Finally, we studied the influence of statistical fluctuations on the sorting. Unfortunately, when
we tried to use ESS to sort events with big fluctuations, the result of sorting was not easily inter-
pretable. Events in this case are sorted according some more complex pattern, which we do not
understand, yet.
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