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Dualities in 2+1 Dimensions

Conventions
Spacetime Conventions We use the metric convention (+−−) in 2+1 dimensions. We take
ε012 =

√
|g| where g is the determinant of the metric; in flat space, where we will mostly work,

ε012 = ε012 =+1. (Similarly, our 1+1 dimensional conventions are (+−) and ε01 > 0.)
We will often neglect the wedge symbol ∧ in writing products of differential forms; for example,

if a is a one-form then a3 ≡ a∧a∧a.
Antisymmetrization of indices is denoted with square brackets so that e.g.

T[abc] =
1
3!

(Tabc +Tbca +Tcab−Tacb−Tcba−Tbac) (1)

and similarly symmetrization is denoted with round brackets. The wedge product is

(X ∧Y )a1...apb1...bq =
(p+q)!

p!q!
X[a1...apYb1...bq] (2)

and the exterior derivative is

(dX)µ1...µp+1 = (p+1)∂[µ1Xµ2...µp+1]. (3)

The Hodge dual is

(?X)a1...an−p =

√
|g|

p!
εa1...an−pb1...bpXb1...bp , (4)

so in Lorentzian 3d, ??X = X .

Gauge Field Conventions Gauge fields are given lowercase letters aµ ,bµ . . . if they are dynamical;
Aµ ,Bµ , . . . represent non-dynamical fields. A charge one/fundamental field has covariant derivative
D = ∂ − ia; the adjoint is D = ∂ − i[a, ·]. Under a gauge transformation g, a→ g−1ag+ ig−1dg
whilst for a fundamental field φ → g−1φ . (For Abelian g = e−iχ , φ → eiχφ and a→ a+dχ .) The
corresponding field strength is

f = da− ia∧a = da− ia2. (5)

We write U(1)−1/2+ψ for the Abelian theory with a single fermion with the following property:
a large positive fermion mass m� 0 leads to the IR theory containing a free photon (U(1)0) whilst
taking m� 0 leads to an empty theory (U(1)1).

Non-Abelian groups U(N) with a U(1) and SU(N) part have two independent Chern-Simons
levels; we write

U(N)k,k′ =
SU(N)k×U(1)k′N

ZN
(6)

and U(N)k ≡U(N)k,k. Note that the gauge-invariant theories are U(N)k,k+nN for k,n ∈ Z.

Spinor Conventions The Pauli matrices σ i for i = 1,2,3 are the standard Hermitian matrices
satisfying σiσ j = δi j + iεi jkσk (where εi jk is the standard antisymmetric tensor, with no signs from
the signature of spacetime). The γ matrices in 2+1 dimensions are can then be taken to be γ0 = σ2,
γ1 = iσ1 and γ2 = iσ3:

γ
0 = i

(
0 −1
1 0

)
, γ

1 = i

(
0 1
1 0

)
, γ

2 = i

(
1 0
0 −1

)
(7)

5
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Dualities in 2+1 Dimensions

which satisfy {γµ ,γν}= 2ηµν . They also satisfy various trace relations:

trγ
µ

γ
ν = 2η

µν , trγ
µ

γ
ν
γ

ρ = 2iεµνρ , trγ
µ

γ
ν
γ

ρ
γ

σ = 2η
µν

η
ρσ −2η

µρ
η

νσ +2η
µσ

η
νρ (8)

A Dirac spinor in 2+1 dimensions is a two-component, complex object. We have given the matrices
in the Majorana basis, in which the matrices are purely imaginary. Majorana spinors are real
two-component objects. (There are no Weyl spinors in odd dimensions.)

In 2+1 dimensions, we take the Dirac action to be S = iψ̄γµ∂µψ . Here, ψ̄ = ψ†γ0. In the above
basis, charge conjugation acts as C : ψ 7→ ψ?; a Majorana fermion is C invariant. Remembering that
fermions anti-commute, one can show that not only is the Dirac action invariant under C, so is the
Dirac mass term ψ̄ψ .

Under a parity transformation, taken to invert the first spatial direction only (P : x1 7→ −x1),
this action is invariant if we define P : ψ 7→ iγ1ψ . However, ψ̄ψ 7→ −ψ̄ψ under this transformation.
This operator squares to P2 = 1.1

Under time reversal, which is an anti-unitary symmetry of nature such that T : x0 7→ −x0 and
T : i 7→ −i, we define T : ψ 7→ iγ0ψ . Note that T : ψ̄ 7→ (iγ0ψ)†(γ0)? = iψ†. It follows that the
Dirac action is invariant under T . Again, ψ̄ψ 7→ −ψ̄ψ under this transformation (as was necessary
by the CPT theorem). This operator squares to T 2 = (−1)F where F is the number of fermions.

Fermion Conventions We adopt the convention that the Lagranigan of a gauged Dirac fermion

L = iψ̄γ
µ(∂µ − iaµ)ψ (9)

is implicitly regularized to preserve gauge invariance with a negative-mass Pauli-Villars regulator.
We refer to this as

U(1)−1/2 +ψ (10)

so that it has a time-reversal anomaly of L →L + 1
4π

ada (in flat space).

1Note that spatial inversion in the origin, (x1,x2) 7→ (−x1,−x2), is actually just a rotation by π and in particular does
not the orientation of spacetime. Instead, we have taken P to be a reflection in one axis. This is sometimes referred to
instead as R.

6
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Dualities in 2+1 Dimensions

Part I

Introduction
We begin by giving some motivation, followed by an outline of the course. Then, we discuss several
relatively simple dualities in 2 and 3 dimensions as a warm up for the body of course.

1. Motivation

Quantum field theories are, in general, very difficult beasts to work with. Very few explicit
calculations are possible, and those that are often given at best asymptotic approximations to physical
observables. But physicists are nothing if not persistent, and over the years we have developed many
different approaches to understanding QFTs.

Some of these approaches are centered around kinematics: the analysis of physical fields, states
and operators and the symmetries they enjoy. In this course we will spend some time thinking
carefully about both continuous symmetries (global and gauged) and discrete symmetries like charge
conjugation and time reversal. Spacetime symmetries are also crucial, of course; the dualities we are
most interested in all exhibit conformal invariance. Supersymmetry is perhaps the most constraining
of all kinematical considerations; even this will also crop up in this course as a tool in analyzing
other, less symmetric systems.

However, the outstanding problems in quantum field theory usually concern the dynamics of
poorly understood, strongly-interacting systems of great physical interest. In many cases, this puts
exact calculations well out of reach. Without the crutch of supersymmetry, then, what can we
possibly hope to say about such a system?

In this course, we provide some tentative answers for a large class of 2+1 dimensional gauge
theories by describing several different dualities.

DUALITY

A duality refers to the relationship between two or more theories A,B, . . . which are equivalent
via some surprising dictionary: every object X in the theory A has an dual object X̃ in the
dual theory B with identical properties. We write A↔ B to assert that the theories are dual;
similarly, X ↔ X̃ .

A duality differs from a symmetry because generally A and B are completely different
theories. If the dual theory is in fact manifestly the same as the original theory (so A ≡ B
but the map between X and X̃ is still non-trivial), we refer to A as a self-dual theory. This is
essentially the statement that theory A has a hidden symmetry, often (but not always) a Z2

involution.

The material we will discuss in this course is the cutting edge of theoretical physics. (Pleasingly,
compared to the rest of that edge, it is also relatively easy to grasp.) This has advantages, such as
being exciting. It also has disadvantages, like the difficulty of conclusively proving many of the
results we want.

7
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Dualities in 2+1 Dimensions

2. Course Outline

In this introduction, we are going to look at four examples of QFT dualities which we can
rigorously establish. This will help in gaining some understanding of what non-supersymmetric
dualities look like, and what kind of language might be useful in talking about them.

Then, in Chapter II on page 25, we will introduce our first IR duality, and one with a very
fine pedigree indeed: particle-vortex duality. This relates two 3 dimensional bosonic theories, one
a gauge theory and the other not. We will follow this up with a discussion of 3d bosonization in
Chapter III on page 33: this is a duality relating an apparently bosonic theory to a fermionic one. In
Chapter IV on page 54, we will then ask how these are related – and this will set the stage to present
the first of many new dualities to be discovered in the last few years.

The basic ideas established, we will indulge in a large number of different proposals of dualities
involving Abelian and then non-Abelian gauge theories, stopping to see applications to the phase
diagram of QCD. Finally, we discuss briefly how supersymmetric dualities, lattice (and wire) physics
and large N calculations lend support to the conjectured dualities we have discussed, before giving
an interesting application of dualities to condensed matter physics.

3. Prototypes

Before we set about discussing the remarkable zoo of new dualities which we are here to
study, however, let us begin by looking at several classic examples of QFT dualities which can be
demonstrated exactly. This will help set the stage for a lot of what will follow.

1. Firstly, we look at T-DUALITY in 2 dimensions. This simple relation, between two compact
scalars of different radii, is a simple and elegant result that is well-known in string theory,
but enjoys a much simpler life as a statement about field theory in 2 dimensions.

2. Then we look at another duality of the 2 dimensional compact scalar: 2D BOSONIZATION.
This relates the scalar to a theory containing a fermion. This is an even a more miraculous
result, yet can be demonstrated by direct calculations.

3. Next up, we look at the FLUX ATTACHMENT in 3 dimensions. This again relates fields
of apparently different statistics to each other, although in the more limited context of
quantum mechanics, or equivalently non-relativistic QFT.

4. Finally, we look at the DUAL PHOTON in 3 dimensions. This relates pure gauge theory
with yet another compact scalar (albeit one living in 3d).

3.1 T-duality

We are actually going to look at just one particularly simple version of T-duality. Consider the
theory

S =
1

4π

∫
d2x

R2

2
(∂φ)2 (3.1)

of a periodic, real scalar φ(x) ∈ [0,2π]. This is actually a conformal field theory; both R and φ are
dimensionless in two dimensions. We refer to R as the radius of the scalar φ , thinking of the field
ρ = Rφ as a map ρ : R×S1→ S1 into a circle. Rephrasing this yet again, this is a sigma model

8
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Dualities in 2+1 Dimensions

whose target space is a circle of radius R. (Conformal field theories in 2 dimensions are ubiquitous
in string theory, of course; we are using conventions in which α ′ = 2.)

The secret which this system conceals is that it is totally equivalent to a sigma model of radius
R̃ = 2/R. This is the statement of T-duality. (In string theory, with a general string coupling α ′,
this becomes R̃ = α ′/R.) The way this manifests itself is rather remarkable, and whilst we will not
discuss it in detail, it is nice to see it in action.

There is actually a more convenient way to think about the theory: instead of thinking about
φ as the dynamical field, we can think about the vector (or one-form) b = dφ . The action only
depends on this one-form, so this is not an unreasonable thing to do.2 However, at least for smooth
configurations φ , we know that d(dφ) = 0, so this is not a bijective change of variable. There is a
simple solution: impose db = 0 using a Lagrange multiplier φ̃ .

We also know that φ is periodic; this shows up in the fact that
∮

C dφ ∈ 2πZ around all cycles C.
To do this, it suffices to consider φ̃ which is also 2π periodic, and write the theory as

S̃ =
1

4π

∫
d2x

R2

2
b2−2b ·?dφ̃ . (3.2)

EXERCISE I.1 Periodicity of the Dual Scalar

Check that this constraint imposes the correctly quantized constraint.

Now all that is left to do is complete the square in (3.2), integrating out b using its equation of
motion b = (2/R2)?dφ̃ :

S̃ =
1

4π

∫
d2x

(2/R)2

2
(dφ̃)2. (3.3)

This is again the action of a compact scalar, but now with the dual radius R̃ = 2/R!
Interestingly, we learn that the theory has not only the obvious U(1) symmetry φ → φ + c,

but an extra, dual symmetry φ̃ → φ̃ + c̃. Thus the global symmetry consists of U(1)×U(1). The
corresponding Noether currents are

jµ

φ̃
=

1
2π

ε
µν(dφ)ν and jµ

φ
=

R2

4π
(dφ)µ (3.4)

and they are effectively interchanged by the duality. Notice that in the φ description, one of these
currents is conserved by virtue of the equations of motion as usual, since ∂µ jµ

φ
∝ ∇2φ , but the other

vanishes automatically, due to what we might call the Bianchi identity ∂µ jµ

φ̃
∝ d(dφ) = 0. These

roles are also exchanged in the φ̃ picture.
We can deduce the relationship between the scalars from the equation b = (2/R2)?dφ̃ :

dφ = (2/R2)?dφ̃ or ∂
µ

φ = (2/R2)εµν
∂ν φ̃ (3.5)

so that they are essentially harmonic conjugates (on-shell). We can also rewrite this in terms of
left-movers and right-movers as

(∂t ±∂x)φ =±(2/R2)(∂t ±∂x)φ̃ . (3.6)

2We are losing information about the value of φ → φ + c, but not the dynamical zero-mode φ → φ + c(t), so we
don’t really miss anything important.

9
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Dualities in 2+1 Dimensions

In fact, if we write the solution to the φ ’s equation of motion in lightcone coordinates we find

φ = φ+(t + x)+φ−(t− x) =⇒ φ̃ =
R2

2
[φ+(t + x)−φ−(t− x)] (3.7)

showing that the duality transformation is essentially a relative sign between left-movers φ+ and
right-movers φ−. (In Euclidean signature, with τ = it and complex coordinates z = τ + ix, the
left-movers are holomorphic and the right-movers anti-holomorphic.)

This factorization into left- and right-movers also explains the extra global symmetry above;
we commonly reorganize the U(1) factors into the separately conserved charges associated with φ+

and φ− and write the symmetry group as U(1)L×U(1)R.

z

Figure 1: A lattice vortex configuration
centered at z

It is helpful to be precise about what configurations
of the scalar φ we allow when quantizing this model.
Smoothly varying configurations in space are definitely
permitted; but the periodicity complicates matters when
it comes to (for example) defining a path integral. This
is most clearly illustrated by using a lattice regulariza-
tion. Consider field configurations like that pictured
in Figure 1. At large distances, we see that the field φ

winds once around the target space S1; configurations
with this kind of winding are referred as vortices. The
pictured configuration has vortex number +1; in gen-
eral a configuration carries a charge w ∈ Z which is a
winding number.

The continuum limit of such vortex configurations is singular at the center z; from the lattice
point of view these are simply configurations with an action that grows to infinity as the lattice
spacing shrinks. Accordingly, we will not include them in the path integral, but we will allow an
operation in which we remove a point and introduce a vortex. These can be thought of as defects:
points omitted from spacetime around which the fields acquire non-trivial boundary conditions.

We also see that a source for a fundamental φ excitation, ∇2φ ∼ δ (x), is dual to a source
for a vortex of φ̃ , d(dφ̃) ∼ δ (x), and vice-versa. Thus T-duality is a particle-vortex duality in 2
dimensions. This is often phrased instead as a duality between momentum and winding, which is
entirely equivalent.

Indeed, if one is a little more careful, one can show that the operators with well-defined scaling
dimension in the original theory are built from ∂+φ+,∂−φ− and the remaining normal-ordered vertex
operators : exp(ik+φ++ ik−φ−) : for appropriate choices of the momenta k+,k−. One might naively
expect that it was necessary to take k+ = k− = n to get a well-defined operator: these are the objects
which are classically invariant under adding 2π to the value of φ .

However, something slightly more general is possible: we are allowed to consider the operator
which creates the vortex. We know that φ̃ excitations are associated with vortices, and the correctly
normalized vertex operators must be Vn,w =: exp(inφ + iwφ̃) :. Carefully checking the commutation
relations, one finds that indeed winding w vortices are created by vertex operators with k+ =−k− =

wR2/2. Hence the most general vertex operator has the form

Vn,w =: exp(ik+φ++ ik−φ−) : k± = n± wR2

2
for n,w ∈ Z. (3.8)

10
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Dualities in 2+1 Dimensions

Then, under the duality, the operators match via R → 2/R, together with n ↔ w and φ± →
±(R2/2)φ±.

One last comment: under our duality, R→ 2/R. This suggests that there is a special point,
R =
√

2, at which the theory has some enhanced structure. This is indeed the case; it is called the
SU(2) point because in fact the theory’s U(1) symmetries are enhanced to a larger SU(2)L×SU(2)R

symmetry. We won’t be pursuing this any further here, but this point is certainly of general interest
to conformal field theorists and string theorists, and the general message that symmetries are richly
enhanced at self-dual points is worth bearing in mind.

A SIMPLE ANOMALY

If the U(1)×U(1) symmetry sounds a little too good to be true... it is. At most one of them
is non-anomalous. You cannot consistently gauge both at once. This does not mean to say
they are not symmetries of the theory, but it does mean some care should be taken.

There is a simple way to see why this is the case. Suppose you gauge the dual current by
adding Aµ jµ

φ̃
= 1

2π
A∧dφ to the action, and integrate by parts:

S =
1

4π

∫
d2x

R2

2
(∂φ)2 +

1
2π

∫
φdA (3.9)

This makes clear that the transformation φ → φ +c now leads to an anomalous transformation
S→ S+

∫ c
2π

φdA in the presence of a non-trivial background field dA. We cannot now gauge
this symmetry.

This situation is referred to as a mixed ’t Hooft anomaly between the two U(1) symme-
tries.

EXERCISE I.2 Optional 2d CFT exercises

These exercises are here for 2d CFT enthusiasts or those who enjoy modular forms – don’t
worry if the language is unfamiliar, as we won’t use these results at all! [1] is an excellent
reference for hard computations involving partition functions and 2d CFTs in general.

(a) Show that the conformal dimension of the vertex operator Vn,w is 1
R2 (

1
2 k2

L,
1
2 k2

R).
(b) Compute the partition function of the theory (3.1) on a torus of modular parameter

τ (a flat torus with z∼ z+m+nτ for m,n ∈ Z), showing that it is

Z(τ,R) := trqL0− 1
24 q̄L̃0− 1

24 q = e2πiτ (3.10)

=
1
|η |2 ∑

n,w∈Z
q

1
2(

n
R+

wR
2 )

2

q̄
1
2(

n
R−

wR
2 )

2

(3.11)

in terms of the Dedekind eta function

η(τ) = q
1
24

∞

∏
n=1

(1−qn). (3.12)

This makes the R↔ 2/R invariance explicit.

11
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Dualities in 2+1 Dimensions

(c) Note that we have subtracted off 1/24 for each chiral boson, as appropriate for a
pair of CFTs of central charge c = 1

2 each, in order to obtain expressions which have
the appropriate modular properties. If this is unfamiliar, don’t worry about it! They
just come along for the ride, appearing in the eta function. However, if you fancy a
challenge, prove that Z(τ,R) is a modular invariant by proving that it is in invariant
under general SL(2,Z) transformations

τ → aτ +b
cτ +d

where a,b,c,d ∈ Z and ad−bc = 1. (3.13)

[Hints: Firstly, observe that these are generated by τ → τ +1 and τ →−1/z. You
can check these using properties of theta functions and the Poisson resummation
formula; see section 10A of [1] for some details.]

(d) At the self-dual point R =
√

2, the theory has an enhanced symmetry. Find vertex
operators with dimension (1,0) at this point, and show that they combine with the
U(1)L current ∂zφL to generate the algebra of SU(2)1. Show the partition function
(3.10) simplifies to

Z(τ,
√

2) =

∣∣∣∣∣ 1
η

∑
m∈Z

qm2

∣∣∣∣∣
2

+

∣∣∣∣∣ 1
η

∑
m∈Z

q(m+ 1
2)

2

∣∣∣∣∣
2

(3.14)

demonstrating that the theory is a (diagonal) rational conformal field theory with
just two conformal blocks.

3.2 2d Bosonization

In the previous section, we discussed the compact boson at radius R, noting that it had a duality
under which R→ 2/R. We remarked that this suggests the theory has a special point, R =

√
2, at

which the theory gains special extra symmetries. However, this is not the only special point the
compact boson possesses.

Let’s look again at (3.8):

Vn,w =: exp(ik+φ++ ik−φ−) : k± = n± wR2

2
for n,w ∈ Z. (3.8 again)

At the point R =
√

2, the momenta k± = n±w have a special structure; all the vertex operators
can be expressed in terms of integer powers of the (anti)holomorphic fields exp(iφ+),exp(iφ−)
combined with either the identity or V0,1. This drastically simplifies the spectrum of the theory.

However, it also makes clear that whenever R2 is rational, a similar simplification will occur.3

One other especially nice point is at R = 1 (or equivalently R = 2). Here, k± = n± 1
2 w.

3Technically, at each such point, the theory is a rational CFT. This type of theory has a physical Hilbert space that
splits into a finite number of irreducible representations of the chiral symmetry algebra. (An even more special case arises
if there are only a finite number of representations – so-called Verma modules – of the chiral Virasoro algebra inside
the full symmetry algebra. This gives the totally solvable minimal models.) Rational CFTs have various nice properties,
including that all operator dimensions are rational numbers.

12
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Most of the work is left to an exercise broadly following [2], but at this point one can show that,
for example, the two-point function is〈

eiφ±(x)e−iφ±(y)
〉
=

(
ε

ε± i(x− y)

)1/R2

(3.15)

where ε is a regularization parameter (see exercise). This can be argued from a standard computation
of the dimension of this operator from a CFT perspective, or derived directly from canonical
quantization.

EXERCISE I.3 The Two-Point Function

Define ζ to be the conjugate momentum to φ . Deduce that we can quantize the theory in the
Schrödinger picture using

φ =

√
4π

R

∫ dp
2π

1√
2|p|

(
apeipx +a†

peipx)e−|p|ε/2

ζ =−i
R√
4π

∫ dp
2π

√
|p|
2
(
apeipx−a†

pe−ipx)e−|p|ε/2

if
[
ap,a†

q
]
= 2πδ (p−q). Note that ∂xφ̃ = (R2/2)φ̇ = 2πζ , and hence

φ± =
1
2

[
φ ± 4π

R2

∫ x

−∞

ζ

]
. (3.16)

Check that

G± = 〈φ± (x)φ± (y)〉−〈φ± (0)φ± (0)〉=
1

R2 log
(

ε

ε± i(x− y)

)
(3.17)

and deduce, using the BCH formulae, that

〈
eiφ±(x)e−iφ±(y)

〉
= eG±(x,y) =

(
ε

ε± i(x− y)

)1/R2

. (3.18)

But at R = 1, this is exactly the two-point function of a free fermion! Remarkably, it sounds
like we have discovered the result that a compact boson at R = 1, the theory is a free Dirac fermion
with components

ψ± =
1√
2πε

e∓iφ± (3.19)

where our conventions are given by

γ
0 =

(
0 1
1 0

)
, γ

1 =

(
0 1
−1 0

)
, ψ =

(
ψ+

ψ−

)
. (3.20)

It may seem rather alarming that there is such a direct map between bosonic and fermionic
operators. After all, these types of particles are distinguished by fundamental statistical properties.
However, this is based on fundamentally 3+1 dimensional thinking: we are used to the representation
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theory of SO(3) and its double cover Spin(3). But with one spatial dimension, there is no continuous
rotation group at all! We cannot hope to distinguish bosons and fermions by smoothly exchanging
them; the difference only becomes manifest when we bring two particles to the same point. This
pushes such questions into the world of short-distance, non-universal physics, and makes it rather
less surprising that the ideas blur together.

Many people are therefore happy to assert that the R = 1 compact boson is indeed a free fermion.
However, this is not really true! The operators (3.19) which we just identified as corresponding
to a free fermion are not allowed operators in the bosonic theory! This is easily seen from (3.8);
these operators have k+ = 1 and k− = 0, which requires w = 1 but n = 1/2, which is banned. This
subtlety is often overlooked, and is discussed below.

“EMERGEABILITY” AND THE SIGN OF THE FERMION

In the language of Senthil [3], the theory of a free fermion is not emergeable from the theory
of the compact boson: the physical Hilbert space of the boson simply does not contain any
anticommuting local operators that can possibly be given by the fermion! This seems at odds
with the duality we have described. The resolution is in some respects rather mild, though
in other ways it is a prime example of the sort of subtleties one has to get right in order to
properly understand the sort of dualities we will see throughout this course.

The solution is in some ways fairly intuitive. Morally speaking, the sign of the fermions
cannot be determined from the duality – they are effectively square roots of well-defined
bosonic operators. This sign ambiguity is what allows them to obey anticommutation relations
rather than commutation relations. More precisely, if we attempt to change variables in our
path integral, then we find that nothing allows us to predict what sign ψ has at each point,
and configurations must be recognized as identical if they differ only by the sign of ψ . The
resolution is simply that this Z2 ambiguity can be thought of instead as a gauge redundancy.
If we gauge the Z2 symmetry ψ →−ψ , then technically the fermion must be dressed with a
line operator connecting it to a second fermion in order to restore gauge invariance; there is
no local fermionic operator, avoiding the problem mentioned above.

In practice this simply means we make two slight modifications to the usual theory of
the free fermion. Firstly, the Hilbert space must contain only gauge invariant states – for us,
that is simply those with an even number of fermions. This is a very reasonable restriction.
(This corresponds to the restriction k++ k− ∈ 2Z.) The second is that we must sum over the
value of any Z2 Wilson lines – which is a fancy way of saying that we should sum over both
periodic and antiperiodic boundary conditions for fermions on compact domains. (This is
reflected in the existence of the operator exp(iφ̃ ).) Again, this is in some ways a relatively
minor modification of the theory.

This is reflected in the identification of currents that also follows from the above computation:

jµ

φ
=

1
2π

ε
µν(dφ)ν = ψ̄γ

µ
ψ = jµ

V (3.21)

jµ

φ̃
=

1
4π

(dφ)µ =
1
2

ψ̄γ
µ

γ
3
ψ =

1
2

jµ

A (3.22)
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The left-hand currents here are integer quantized (corresponding to the n,w quantum numbers),
whilst for the case of a true free fermion (with periodic boundary conditions), the right-hand sides
should equal n++n− and 1

2(n+−n−) respectively. Clearly these are not consistent.
For completeness, we include a statement of this fixed duality:

compact scalar at R = 1 ←→ Dirac fermion+Z2 gauge theory. (3.23)

This ultimately doesn’t spoil the simple intuition that a fermion emerges from the left-hand theory,
but it is good to be aware of the subtlety. You may wonder whether this can be inverted, to give a
free fermion in terms of a gauged scalar. The answer is yes, although it requires a little subtlety to
get right: we need to make a theory of a scalar sensitive to a spin structure, which is possible only by
introducing a particular topological term for the Z2 gauge field. See [4] and the references therein
for a more careful discussion. This actually has a beautiful parallel with the story we will tell.

There are plenty more things which can be said about this system, but we will just outline
briefly two of them. Firstly, one can actually work at a general radius by exploiting the bijection of
the conserved currents, since

(dφ)2 =−4π
2(ψ̄γ

µ
ψ)2. (3.24)

Therefore, we can write R2 = 1+g/π and then we are left with a duality

R2

8π
(dφ)2 ←→ iψ̄ /∂ψ− g

2
(ψ̄γ

µ
ψ)2 (3.25)

hole particle

∆k

hole

particle

∆k

Figure 2: Low-energy excitations of
Fermi surfaces in one and two spa-
tial dimensions; notice that only in
more than one dimension do these low-
energy particle-hole pairs generically
have large relative momenta ∆k

between a compact boson at a general radius and a (Z2

gauged) Thirring model. This is a rare example of an
exactly marginal deformation of a CFT, which simply
moves one straight to another conformal theory.

Secondly, the bijection between operators also al-
lows us to extend the above duality by adding a relevant
operator. Concretely, it follows from the above identi-
fications that the mass term ψ̄ψ is dual to a potential
cosφ . This leads to the identification of so-called “Sine-
Gordon” theory with the massive fermion, a famous
story going back to Coleman [5, 6].

Some of these details are helpful for understand-
ing higher-dimensional dualities (like the subtleties sur-
rounding statistics, and identification of mass defor-
mations), but others (like the existence of a marginal
parameter) are specifically two-dimensional.

There are other physical ways to see that this
straightforward type of bosonization belongs in one
spatial dimension. One intuitive way to understand the
bosonization map ψ̄ψ ∼ ∂φ is to realize that a particle-
hole pair of fermions is bosonic in character.

Let’s think in terms of a Fermi surface at finite
chemical potential, as pictured in Figure 2. It is easy to
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see that in one dimension, low-lying particle-hole pairs have low relative momentum (and more
relevantly group velocities ∂E/∂k which are almost identical), so that they propagate coherently.
Therefore, they can be thought of loosely as a single particle (and any weak attraction between them
will indeed create such a bound state). This is only an intuitive picture, of course, but it helps to
illustrate how fermions can combine into bosonic excitations.

In higher dimensions, there are low-energy particle-hole pairs with relative momenta all the
way up to kF , and so it is hard to bind particles and holes together in such a naive way. One needs a
more sophisticated approach to relate fermions and bosons in higher dimensions; we will see in the
next section that in two spatial dimensions bosonization relies crucially on a new mechanism.

EXERCISE I.4 Another optional 2d CFT exercise

2d bosonization suggests another nice exercise for anyone enthusiastic about 2d CFTs. Take
the partition function (3.10) and set R = 2, showing first that it takes the form

Z(τ,2) =
1

2|η |2

(∣∣∣∣∑
n

qn2/2
∣∣∣∣2 + ∣∣∣∣∑

n
(−1)nqn2/2

∣∣∣∣2 + ∣∣∣∣∑
n

q
1
2 (n+

1
2 )

2/2
∣∣∣∣2
)

(3.26)

and then that this can be interpreted as the partition function of a Z2-gauged fermion:

ZF =
1
2

(
trperiodic BCs

1− (−1)F

2
qL0− 1

24 q̄L̃0− 1
24 + trantiperiodic BCs

1− (−1)F

2
qL0− 1

24 q̄L̃0− 1
24

)
.

(3.27)
For the first part, it might be helpful to think about the physics of different n,w in (3.10). For
the last part, notice that the three terms in (3.26) are theta functions which have useful infinite
product representations. (F counts the number of fermions, so the above projects onto sectors
with even numbers of fermions.)

NON-ABELIAN BOSONIZATION

The above story allows us to formulate a bosonic description of a theory of a single complex
fermion in 1+1 dimension. This theory has an obvious U(1) symmetry (or more precisely
U(1)L×U(1)R) which is realized by the dual scalar. But let’s follow Witten [7] in asking
a sensible question: suppose we take N free complex fermions. If we bosonize them all
according to the above recipe, we get a theory of N compact bosons, which seems to have
a continuous symmetry group U(1)N

L ×U(1)N
R . But the fermionic theory has a manifest

U(N)L×U(N)R symmetry.
This gives us a concrete example of a hidden symmetry; the theory of N compact bosons

has an emergent U(N) structure. However, it also raises the question of whether or not there
is a dual theory which makes the U(N) structure manifest. Witten answered this question
with a definitive and remarkable "yes": he showed that N complex fermions are equivalent
to a bosonic sigma model into U(N) with a very particular topological term. In fact, the
overall U(1) factor decouples and gives a single compact boson. The resulting duality goes
by the name non-Abelian bosonization, and the non-Abelian part of the sigma model is the
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SU(N) Wess-Zumino-(Novikov-)Witten model (WZW model) at level 1, commonly written
as SU(N)1.

We will not discuss this story in any detail here, since we are ultimately interested in
higher dimensional dualities; we will just give the key ingredients of the operator dictionary.
In fact, the thinking of the compact boson φ as lying in the u(1) Lie algebra, we can make
some guesses. Firstly, the analogous thing to eiφ/R ∈U(1) is gi j ∈ SU(N). Accordingly, we
expect that this is dual to the mass term:

eiφ/Rgi j ←→ ψ
†
+iψ j (3.28)

where we have included a separate compact boson to capture the U(1) part. Secondly, the
conserved currents lying in the Lie algebra are

g−1
∂+g,∂−gg−1 ←→ ψ

†
γ±ψ− trace (3.29)

where the left and right SU(N) symmetries g→ hLghR are appropriately associated with left-
and right-movers.

3.3 Flux Attachment

The type of bosonization discussed in Section 3.2 seems inherently two-dimensional: as we
mentioned above the distinction between fermions and bosons is very weak with only one spatial
dimension, since we cannot exchange particles without bringing them through each other.

However, with two spatial dimensions, we are of course free to try to identify the statistics of
well-separated particles by orbiting them around each other. This is much more like the familiar
story in three spatial dimensions, although now the rotation group SO(2)≡U(1) does not have a
simply connected double-cover.

It is worth taking a moment to think about this issue. Firstly, consider a single particle. We can
certainly define bosons and fermions according to whether a single particle state lies in an integer or
half-integer representation of the double-cover Spin(2). However, there are many more ways that
particles could in principle transform under rotations. Since there is no compact covering group of
SO(2), there is no rotation which must act as the identity on the Hilbert space. Instead, rotations
may act as arbitrary unitary operators on the Hilbert space! A state could easily have spin 1/3, for
example, so that the state rotates as |ψ〉 → exp(iθ/3) |ψ〉, returning to itself only after a 6π rotation.
This state is neither bosonic nor fermionic; it is an example of an anyon.4

This is quite remarkable – decomposing into irreducible representations of the additive covering
group R, we see that a general state can have an arbitrary spin s ∈R. The fact that this is an Abelian
group at least guarantees that we have one-dimensional representations. But things get even more
surprising when we start to consider multi-particle states.

4If this is a 2+1 dimensional system embedded in a 3+1 dimensional world (with a potential restricting us to a plane,
say), then this could not be a true physical state. However, it could be that the fundamental excitations of an effective
theory are anyonic. The only restriction would then be that physical states contain combinations of anyons which have
(half-)integer spin. This is exactly the situation found in the Fractional Quantum Hall Effect (FQHE).
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	 :

2π

|boson〉 |boson〉

| fermion〉 −| fermion〉

|anyon〉 e2πis |anyon〉

Figure 3: The representation theory of the covering group of SO(2) (i.e. the additive group R)
allows the 2π rotation to be represented by an arbitrary phase e2πis

Consider a state containing two identical particles. We can act with translation or rotation
operators to smoothly exchange them, and then see how the state has transformed. We can impose
is that the final state is equivalent to the initial state, but not that it is identical. Thus they are
related by an arbitrary unitary operator U which need only be a symmetry of the theory. In higher
dimensions, one can prove that U2 = 1, but that does not work here. The situation with more
particles is even richer: if we have three particles 1,2,3, then the operators U12 and U23 which
exchange pairs of particles need not commute! Instead, with n particles, the operators Ui j form a
unitary representation of the braid group Bn, as shown in Figure 4. For large n, this group is a very
complicated non-Abelian group. Particles with such a property are non-Abelian anyons.

U13

U12 U23

U13 =U23U12U23 6= U12U23U23

time

Figure 4: The action of exchange operators can be an arbitrary unitary matrix; moreover, distinct
exchange operators need not commute. On the right, we distinguish between two operator orderings
which are not equal in a general non-Abelian representation of the braid group. This can be seen by
drawing them as braids which are clearly topologically distinct. Note the first (earliest) operator is
on the right in an operator product

Strikingly, it is possible to have a multi-particle Hilbert space which is larger than the product
of single particle Hilbert spaces [8]; there is extra structure inherent in the entanglement between
even widely separated particles. The physics of anyons is very rich indeed.

This is all very interesting, but we haven’t found a way to see how bosonization is possible in
two spatial dimensions. The trick is to exploit the fact that there can be multiple contributions to the
phase of a state when we exchange particles. If we can find a way to start with a pair of fermionic
particles with a exchange phase of π , then add something to the theory which generates an extra
phase of size π , we would actually obtain bosonic behaviour. There is even a simple, familiar way
to generate phases: the Aharanov-Bohm effect.

Suppose that we start off with a bosonic particle, but then give it both an electric charge q and a
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magnetic charge q′ under a gauge field. (This means it is a dyon.) Then the Aharanov-Bohm effect
dictates that exchanging two such particles, we will acquire an additional phase πqq′. Therefore, we
postulate a first, very tentative result in 2+1 dimensions:

dyonic boson with charge (1,1) ?←→ fermion (3.30)

where both theories are simply quantum mechanics. This process is called flux attachment, since we
are attaching magnetic flux to a particle.

=⇒ Aharanov-Bohm phase eiπ =−1

Figure 5: The cartoon of flux attachment: each charge 1 boson also carries 1 unit of magnetic flux
around with it. (Flux is represented by an arrow, since the magnetic field points out of the plane.)
This means that the Aharanov-Bohm effect generates a phase of 2π when one such particle encircles
another, or π when two are exchanged, turning the boson into a fermion

EXERCISE I.5 Aharanov-Bohm Effect

The usual statement of the Aharanov-Bohm effect is that an electric particle of charge q picks
up a phase q

∫
C a when moving along a contour C. Assuming that a particle of magnetic

charge q′ has total magnetic flux 2πq′, derive carefully from this result that exchanging two
dyonic particles with charges (q,q′) generates an Aharanov-Bohm phase of πqq′. There’s a
factor of 2 you should worry about.

Let’s formulate this a little more precisely. The quantum mechanics of n charged bosons is

H =
n

∑
m=1

1
2m

(pi−qa(xi))
2 +V (xi) (3.31)

where a is the gauge field. However, in order to give the bosons a magnetic charge too, we also need
to impose

1
2π

B(x) = q′
n

∑
m=1

δ (x−xm) (3.32)

where B = ∇×a = ∂1a2−∂2a1 is the magnetic field strength. We take the bosons to be identical,
so the wavefunction must be symmetric under interchange of all pairs of particles.

We can solve (3.32) explicitly in the Coulomb gauge ∂iai = 0 using the Green’s function
∇2 1

2π
log |x−y|= δ (2)(x−y) together with the 2d identity εi j∂iε jk∂k =−∂i∂i:

ai(x) =−q′εi j∂ j

n

∑
m=1

log |x−xm|= q′∂i

n

∑
m=1

arg(x−xm) (3.33)

where arg measures the angle between its argument and the x1-axis. (Recall that logz = logr+ iθ ,
so θ is the harmonic conjugate of logr.)
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This seems to suggest that the gauge field is pure gauge, since we have written it as a total
derivative. However, because arg is not single-valued, this is a bit too quick. Suppose we begin
with a wavefunction Ψ(x1, . . . ,xn) with conventional boundary conditions and then do a gauge
transformation with parameter λ (x) =−q′∑n

m=1 arg(x−xm). Then the new wavefunction, in the
a = 0 gauge, is

Ψ̃(x1, . . . ,xn) = e−iqq′∑m<m′ arg(xm−xm′ )Ψ(x1, . . . ,xn) (3.34)

where the sum is over all distinct pairs of particles [9, 10]; there is an awkward factor of two
one has to get right here. It follows that upon exchanging a pair of particles, Ψ̃ now receives the
Aharanov-Bohm contribution e−iπqq′ .

If we take q = q′ = 1 as proposed, these indeed cancel to give rise to fermion-like boundary
conditions!5 The Hamiltonian acting on Ψ̃ is now simply

H̃ =
n

∑
m=1

1
2m

p2
i +V (xi). (3.35)

We could clearly also add, for instance, a potential depending on the separation of the particles
without spoiling this result.

EXERCISE I.6 Boundary Conditions on Wavefunctions

By considering the wavefunction governing the relative motion of two such particles, show
that to regularize the contact interaction when two particles come together, we should modify
the boundary conditions to behave as |x1− x2|±q′/q as particles approach. Show that this
translates into

Hfixed =
n

∑
m=1

1
2m

(pi−qa(xi))
2 +V (xi)+

2πq′

mq ∑
i< j

δ
(2)(xi−x j). (3.36)

This establishes our result: bosons with dyonic charge (1,1) are identical to fermions! Moreover,
we can even embed this result in a non-relativistic field theory. Consider the action

S =
∫

d3x iφ †(∂0− iqa0)φ −
1

2m
|(∂ − iqa)φ |2−V (x)|φ |2− πq′

mq
|φ |4

+
q

4πq′
ε

µνρaµ∂νaρ (3.37)

for a gauge field aµ and a complex field φ . This is an example of a non-relativistic field theory. One
can take the density of particles to be |φ |2 = ∑δ (2)(x−xi); this reduces this theory to exactly the
quantum mechanics described above if we work in the a0 = 0 gauge. In particular, the a0 equation
(Gauss’s law) is

1
2π

B = q′|φ |2 (3.38)

implementing the flux attachment which is key to the statistical transmutation we have discussed.

5Actually, this is still slightly too quick. See Exercise I.6.

20



P
o
S
(
M
o
d
a
v
e
 
2
0
1
8
)
0
0
1

Dualities in 2+1 Dimensions

The final term in (3.37) is something that will become very familiar to us: it is a U(1) Chern-
Simons term at level k = q/q′. It is in fact a topological term, independent of the metric, as is clearly
seen by writing it in the form

SCS =
k

4π

∫
ada. (3.39)

Notice that, if we rescale a to set the electric charge to q = 1, then the magnetic charge and statistical
phase are given by q′ = 1/k and θ = 2π/k respectively in terms of the level k. We will discuss such
terms more when we get to Section 9 on page 35; see also Appendix XI on page 123.

3.4 The Dual Photon

Let us now turn to three dimensions, and for the first time consider a gauge theory with U(1)
gauge field aµ . Consider the action

S[aµ ] =
∫

d3x − 1
4g2 fµν f µν (3.40)

of a free photon. The partition function is

Z =
∫

Da exp(iS[aµ ]) (3.41)

where of course one has to treat the gauge-invariance of the path integral correctly.
However, there is another way of looking at this theory. Note that S depends on aµ only through

the gauge invariant quantity fµν . Therefore, it is possible to replace the path integral over aµ with
one over fµν . The only thing we have to take care of is the fact that d f = 0. Therefore, let us include
a Lagrange multipler σ for this constraint. This shows that the above action is equivalent to

Z =
∫

D f Dσ exp
[

i
∫

d3x − 1
4g2 fµν f µν +

1
4π

σε
µνρ

∂µ fνρ

]
. (3.42)

But now we can integrate out fµν , which only appears quadratically, by using its equation of motion,
f µν =− g2

2π
εµνρ∂ρσ :

Z =
∫

Dσ exp
[

i
∫

d3x
g2

8π2 (∂σ)2
]

(3.43)

Rather remarkably, we discover that in 2+1 dimensional space the free photon aµ is totally equivalent
to a free scalar σ ! The scalar σ is called the dual photon for obvious reasons.

Much of the above is more naturally formulated in the language of differential forms, so that,
for instance,

da =− g2

2π
?dσ or ?da =− g2

2π
dσ (3.44)

which makes clear one of the odd properties of this type of duality: Bianchi identities are inter-
changed with equations of motion. In the photon language, it is obvious that dda = 0 but d?da = 0
is the standard equation of motion. On the other side of the duality, the former becomes d?dσ = 0
which is the equation of motion, whilst the latter becomes ddσ = 0, which is trivial. In general,
in d dimensions, the theory of a p form and a d− 2− p form are related in this way. Another
classic example of this is in four dimensions, where the 1 form theory of electromagnetism is dual
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to another 1 form theory. This is what is commonly referred to as electromagnetic duality, which
exchanges B and E fields. In particular, the 2 dimensional T-duality we have already discussed in
Section 3.1 is the electromagnetic duality of 0-forms φ and φ̃ .

The comparison to 2 dimensional T-duality is interesting. It was not obvious that the dual
variable φ̃ in that case should be periodic; this arose from considering the quantization of vortex
charge in that theory. It is certainly clear that our dual photon at least has a shift symmetry,
σ → σ + c. We have already learned something remarkable: the humble theory of the free photon
in 2+1 dimensions has a secret Abelian symmetry. But to answer questions about its compactness
(whether the group is U(1)) we need to understand this symmetry much better.

Let us translate this back into the usual language of the one form gauge field aµ . The conserved
current associated to shifts of σ (obtained by replacing dσ → dσ −A for a background gauge field
A) is

jµ =− g2

4π2 ∂
µ

σ . (3.45)

Using (3.44), the dual of this current is

jµ =
1

2π
ε

µνρ
∂νaρ or j =

1
2π

?da (3.46)

which satisfies ∂µ jµ ∝ dda = 0 due to the symmetry of partial derivatives. The corresponding
conserved quantity j0 = 1

2π
f12 is magnetic flux, and thus we have an associated U(1) symmetry

often referred to as a magnetic symmetry.6 This symmetry can be coupled to a background gauge
field with a term

∫
d3xAµ jµ =

∫ 1
2π

A∧da, a so-called BF term linking the two gauge fields together.7

M †(x)

∫
S2 f = 2πn

Figure 6: A magnetic monopole is a de-
fect from which there emerges a (quan-
tized) magnetic flux

From this point of view, one should ask why this
corresponds to a non-trivial symmetry, since it seems
the current is identically conserved. We normally think
of Noether’s theorem as relating symmetries to currents
which are conserved on-shell, but we do not seem to
have used the equations of motion.8 But just as the
winding of vortex configurations in 2 dimensions hid
a surprise, there is a subtlety here due to the non-trivial
topology of the gauge group U(1)gauge.

Suppose we edit the path integral by removing
a single point x in spacetime. We must then specify
boundary conditions for the gauge field on the S2 sur-
rounding the point x.

6Notice that the Chern-Simons term of the previous section can be rewritten as SCS = k
∫ 1

2 aµ jµ . Clearly, the
Chern-Simons represents a coupling that induces an electric field around magnetic charges: differentiating the action
with respect to aµ shows that k jµ is given a unit electric charge in a theory with this term. In general, the spectrum of
Chern-Simons theory consists of dyonic particles whose charges are determined by the Chern-Simons level.

7The name comes from other contexts where the A is called B, and the field strength da is called F . It’s a shame we
rarely call gauge fields B.

8The same questions can be asked in the 2 dimensional T duality. As remarked above, it is a general feature of
electromagnetic duality that equations of motion and Bianchi identities are interchanged.
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The key ingredient is the monopole operator
M (x). This is a another so-called defect operator, defined by editing the path integral to re-
move the point x, and then adding a non-trivial boundary condition for the gauge field on the surface
surrounding that point. Acting with the monopole creation operator M †(x) imposes a flux of∫

S2 f = 2π . Just as with the 2 dimensional vortices, one can compute correlation functions involving
M (x) and its dimension in the usual way, by inserting it into the path integral.

In particular, with the above choice of f , we can show that this gives the operator charge 1
under jµ . Suppose we insert M †(x) at x = (t,x1,x2). Now flatten the sphere so that the surface lies
entirely in the spatial x1,x2 plane, forming two discs S+ and S− at times t+ and t− just before and
after the insertion of M †(x). Since

∫
∂V f =

∫
V d f = 0, this does not change the value of the surface

integral. Therefore,

1 =
1

2π

∫
S+∪S−

f =
∫

S+
d2x

1
2π

f12−
∫

S−
d2x

1
2π

f12 = Q(t+)−Q(t−) (3.47)

showing that inserting this operator has increased the charge Q =
∫

d2x j0 by 1 unit.
In fact, this is the lowest-charge monopole operator in the theory, and all other monopole

operators have a charge which is a multiple of this, as can be seen by a careful mathematical analysis,
or a more physical one. (See “Monopoles from Topology”.)

MONOPOLES FROM TOPOLOGY

The existence of these monopole operators is inextricably linked with the topology of the
U(1) gauge group [11]. Given a gauge group G, a gauge field is a connection in a G-principal
bundle. Now the G bundles over an R3 spacetime are all trivial, so our usual intuition about
gauge theory applies. Yet when we remove a point this is no longer the case. Since R3\{0}
and S2 are of the same homotopy type, we are really interested in the bundle P(S2,G). Since
S2 is covered by two topologically trivial charts which are glued together along an S1 equator,
there can be a non-trivial structure to P(S2,G) associated with maps from S1→ G. More
precisely, the homotopy classes are classified by π1(G). We have the result

gauge group G connected but not simply connected =⇒ ∃ monopole operators

which gives rise to monopole operators whenever the group G contains a U(1) factor.
In particular, because π1(U(1)) = Z, the theory admits pointlike excitations labelled

by a new quantized integer charge, namely which homotopy class the gauge field belongs
to. We will check in a moment that gauge connections in the nth homotopy class (with first
Chern number n) satisfy

∫
S2 f = 2πn, corresponding to the quantization as claimed above and

explained below. The U(1)global monopole symmetry corresponding to this conserved charge
is said to be topological, since (a) the monopole operators charged under it only exist because
of the topological properties of the gauge group, and (b) the charge is a topological invariant
of a bundle.

There is a much more physical way of phrasing the above argument, due to Dirac. We
will think about the wavefunction of an electron (or any particle) of charge 1 in the presence
of a point-like magnetic charge such that

∫
S2 f = q̃. The magnetic field is da, a ‘pure curl’,
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in empty space, so if a was universally defined, we
∫

S2 f =
∫

∂S2 a = 0 since the sphere has
no boundary. Therefore a cannot be defined globally; we have to define it on two patches as
above, say a+ on the upper and a− on the lower hemisphere. But on the equator, both patches
overlap and the electron has two good wavefunctions in two different gauges. They are related
by a gauge transformation as a+−a− = dχ for some χ , which must be well-defined modulo
2π for our wavefunction to be single-valued. But the equator is the boundary of both the
upper and lower hemisphere; hence∫

S2
f =

∫
upper

f +
∫

lower
f =

∫
equator

a+−
∫

equator
a− =

∫
equator

dχ = 2πn (3.48)

for some integer n, which characterizes the twisting of the bundle. This proves the quantization
condition.

This is exactly the phenomenon of Dirac quantization: the periodicity of the U(1) gauge
field (which is associated with the phenomenon of electric charge quantization) gives rise
to the existence of magnetic monopoles (whose quantized charge is fixed in terms of the
fundamental electric charge).

So σ is another compact scalar: with the above normalization, we have σ ∈ [0,2π). Thus we
have identified a hidden U(1) symmetry which is a genuine global symmetry of the 2+1 dimensional
photon, complete with charged excitations given by monopoles. This type of symmetry will be very
important for us in what follows.

In fact, in terms of σ ∈ [0,2π), the monopole operator is much less mysterious! Since we know
that we want it to be an object carrying unit charge under the U(1) symmetry, and σ → σ + c under
this symmetry, we can simply look at operators like exp(iq̃σ). This is clearly a well-defined operator
for q̃ ∈ Z, with the correct quantized charge to be a monopole operator.

This also suggests that the operator is loosely speaking unitary, which makes sense from the
point of view of boundary conditions: inserting an antimonopole M (x) right on top of a monopole
M †(x) results in a trivial gauge field boundary condition

∫
da = 0. (This doesn’t stop things being

more complicated if we separate these objects and then bring them together, though, particularly in
the presence of matter fields, as we will discuss later.) Note that parity inversion changes the sign
of the magnetic field and hence should correspond to M (x)↔M (x)†, and thus σ ↔−σ . Indeed,
from the formula (3.44), σ should be a pseudo-scalar.

Just as with the 2d compact scalar, if you like to think about field theory in terms of the lattice,
we get another argument for including on monopoles. The only reason why one might be tempted to
exclude monopoles is that they require the excision of a point in spacetime to allow the multivalued
nature of the defect to be resolved – but on the lattice, no such principle can be applied! If you
have a small plaquette on a lattice with magnetic flux lines all pointing outwards, that describes a
perfectly smooth, finite-energy monopole configuration. Of course, such a field configuration has
large derivatives near its core and hence the monopole energy scales with the lattice size, but that is
a general phenomenon of all masses on the lattice. One expects that similar reasoning should lead
one to include monopoles in any UV regularization.
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Part II

Particle-Vortex Duality
We describe our first IR duality, analyzing the Wilson-Fisher fixed point in 3 dimensions.

4. IR Dualities

The examples of dualities we have discussed so far are remarkable: one can straightforwardly
prove in each case that two concrete theories, despite being expressed in very different language, are
literally identical. Such statements are tremendously powerful. They are also tremendously rare!

Let us pause a moment to gain some insight into why that should be. One can always rewrite
a simple theory – say, that of a free fermion – in some other very complicated way, perhaps
using awkward non-linear changes of variable. But the resulting theory (setting aside our previous
examples) is almost always very artificial and not of much practical use. What do we mean by
‘artificial’? Typically, the theory will have a long, fiddly Lagrangian with lots of very non-obvious
non-linear interaction terms set to very particular values. This lacks simplicity, making it hard for
us to analyze the new theory, and universality, meaning the theory is not interesting for practical
applications. But this is not a very mathematical way of talking.

We can do better. There is a lot of machinery developed to understand questions of universality
in theoretical physics. The key idea is that of an RG flow.

REFRESHER: RENORMALIZATION GROUP FLOWS

Let’s briefly establish some useful language. The idea is simple enough: suppose we only
care about the low-energy or infrared (IR) physics of some theory. We assume the Lagrangian
contains many couplings λ1,λ2, . . . and is defined with a momentum cutoff Λ. We are
interested very low energy scales, so one might imagine taking a limit where we zooming
out from the system, rescaling dimensionful quantities like Λ→ Λ′, which increases. But
computations with a large Λ are hard. So as well as rescaling, we also integrate out modes
between [Λ,Λ′], returning the cutoff to Λ. In this way, we find that zooming out is equivalent
to a redefinition of the λi at a fixed cutoff Λ.

In general, in an interacting theory, following this renormalization group (RG) flow is a
very hard problem. However, at least in the weakly interacting regime, a good approximation
is simply that λi ∝ Λ∆i where ∆i is the dimension of λi. Generically, this means that positive
dimension or relevant terms – including most significantly the mass term – grow very large in
the IR, and the low-energy physics is usually boring: the theory consists only of very massive
particles which we cannot excite. If we throw these massive or gapped modes away, we often
are left with an empty (gapped) theory.

However, by tuning relevant and possibly marginal (i.e. dimensionless) parameters
to special values, we might find something more interesting. We often expect it is safe to
ignore the remaining irrelevant operators, since dimensional analysis suggests they tend to
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Dualities in 2+1 Dimensions

zero. (There can be exceptions to this, with the operators in question known as dangerously
irrelevant operators.) There are only a finite number of relevant and marginal operators to
tune in most sensible theories.

The end-point of the RG flow must be scale-invariant, by definition, as it is a fixed point
of the dilatations. In fact, it generally has full conformal symmetry. This can happen in two
boring ways: the theory could be gapped, or it could be free. However, there is the possibility
of landing on a non-trivial conformal field theory (CFT). These interesting theories are the
focus of our study.

So how does this idea help us? Well, CFTs are special (and often isolated) points in theory
space. This means that we can hope to avoid ending up with unwieldy non-universal Lagrangians.
Instead, suppose that theory A can in principle be rewritten in the language of theory B. Then if we
tune to a conformal point in theory A, we know that B must also be a CFT at this point. Moreover, if
we could assert that there was a unique CFT in theory B, we would even be able to deduce that there
is a duality between these theories at these precisely defined points. (We can also in principle then
move away from the CFT point by identifying corresponding relevant operators on both sides of the
duality and turning them on.)

These steps are generally unworkable in practice, since even when we can explicitly rewrite (for
example) a lattice theory in new variables, it is virtually impossible to rigorously enumerate CFTs
or track RG flows in the continuum limit. But it does give us some hope of finding CFT dualities in
superficially unrelated systems. (We will also see later that more generally low-energy physics can
display some interesting universal features even in the absence of non-trivial CFTs.)

The duality we are going to investigate in this chapter is along these lines. Consider the theory
of a complex scalar φ in 2+1 dimensions,

SA =
∫

d3x |∂µφ |2−µ|φ |2−λ |φ |4 + · · · . (4.1)

Here, we impose a U(1) symmetry by insisting the action is invariant under rotations of the phase of
φ ; this is the global symmetry of (4.1). In 2+1 dimensions, λ has dimension 1; µ has dimension 2
as always. In principle, we should also be careful with the marginal sextic term, but for simplicity
we will focus on the relevant operators. Note that for λ > 0 the theory is stable without the need for
higher-order terms.

This is a famous example of a theory with an interesting, interacting fixed point: the O(2)
Wilson-Fisher fixed point, or (the critical point of) the XY model. Both of these names refer to the
global symmetry. A cartoon of the RG flow for this system is shown in Figure 7.

It turns out that this system is dual to the gauged XY model,

SB =
∫

d3x − 1
4g2 fµν f µν + |Dµ φ̃ |2− µ̃|φ̃ |2− λ̃ |φ̃ |4 + · · · (4.2)

which we again claim can be tuned to a non-trivial CFT. One can obtain this theory (which actually
describes the statistical field theory of 3 dimensional superconductors) from (4.1) by gauging the
U(1) global symmetry and then once more tuning the coefficients to a critical point. (Note that
now g2, which has dimension 1, is also relevant; we will roughly speaking send it to ∞, essentially
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µ

λ

free

WF/XY

Figure 7: Cartoon of the RG flows near the O(2) Wilson-Fisher point/XY model, showing only the
quadratic coupling µ and the quartic interaction λ , both of which are relevant near the free field
point in 2+1 dimensions

dropping the kinetic term for the photon.) But there is no obvious reason why one would imagine
that this would get you back to the same system. For example, in the UV (i.e. the ultraviolet, or at
high energies), (4.2) contains a photon, which seems very unlike (4.1).

This duality might be written as

XY model ←→ U(1)+XY model (4.3)

although people often use a more schematic notion, as in

|∂φ |2−|φ |4 ←→ − 1
4g2 fµν f µν + |Dφ̃ |2−|φ̃ |4 (4.4)

where we write |φ |4 to represent that we move away from the free scalar point, but omit the |φ |2

term to emphasize that this operator is “tuned away” at the critical point. One might also send
g2→ ∞ (as this coupling grows in the IR) and omit the first term on the right-hand side:

|∂φ |2−|φ |4 ←→ |Dφ̃ |2−|φ̃ |4 (4.5)

These are essentially mnemonics for the Lagrangian descriptions (4.1) and (4.2). For reasons that
will become clear, this is what is usually referred to particle-vortex duality.

In order to gain some understanding of how this duality could possibly hold, we will briefly
analyze both theory A and and theory B. (This duality has a long history, and a lattice version of this
was explicitly proven over 40 years ago [12, 13]. The continuum limit has been probed with many
numerical experiments too. It is definitely correct.)

5. Theory A

As already mentioned, the theory (4.1) enjoys the U(1) global symmetry φ → eiαφ .
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Note that, as shown in Figure 7, there is one relevant deformation around this fixed point. We
may as well take that deformation to be µ . Note that as we vary µ , the system enters different
phases:

n µ � 0: The theory is explicitly gapped, and the U(1) is unbroken. The lowest-lying
excitation is φ (with mass µ) which carries unit U(1) charge.

n µ � 0: Here, φ acquires a vacuum expectation value (VEV) since
〈
|φ |2

〉
= v =−µ/2λ .

Therefore, the U(1) symmetry is spontaneously broken, and the theory has a massless
Goldstone mode. Explicitly, if we write φ = ρeiσ , then σ is massless field, whilst ρ has a
large mass.

However, considering static configurations of the form φ = ρ(r)eiσ(θ) in radial coordinates,
we discover that there are also particle-like vortices in which σ winds asymptotically. One
can show that

∮
S1

∞
∂θ σ = 2πn is quantized, with n ∈ Z, and that they have a logarithmically

divergent energy in infinite space.

Nonetheless, one may consider instead pairs of vortices. If we choose the charges n such
that there is no winding at infinity, the energy contribution form long distances is finite.
Now one can compute the potential energy V (R) of a vortex-anti-vortex pair separated by
a distance R. One finds that V (R)∼ log(vR), so that the pairs are logarithmically confined.

EXERCISE II.1 Vortices in the XY Model

Show that the vortices in (4.1) are quantized as stated, and have an energy that scales like
E ∼ log(vL) if we regularize the system by integrating out to r = L. Show also that the
potential energy of the vortex-anti-vortex pair is V (R)∼ log(vR).

Meanwhile, at one intermediate point sits the critical XY model. The location is commonly
written as “µ = 0” which is not really correct; one really means δ µ = 0 where δ µ is the deviation
of µ from its value at the critical point.

Restricting to just the relevant operators around the XY point, then, the phase diagram reduces
to what is shown in Figure 8.

|∂φ |2−|φ |2−|φ |4

µ

gapped particles,
U(1) unbroken

〈φ〉= 0

massless Goldstone,
U(1) broken,

confined vortices

〈φ〉 6= 0

CFT: WF/XY

Figure 8: The phase diagram of Theory A in 2+1 dimensions, showing only the relevant coupling
around the critical point. On the right, we ultimately flow to an empty fixed point, whilst on the
left-hand side one is left with a massless compact real scalar with a U(1) shift symmetry
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6. Theory B

If theory B is dual to theory A, it must also possess a U(1) global symmetry. Since the phase
rotations of φ are now gauged, this is no longer a (faithful) global symmetry of the theory. So what
are the global symmetries of theory B? It is possible that we have an emergent symmetry which
is not manifest in the UV description (4.2); but in fact, that is not the case here. The symmetry
is simply of a less familiar kind: it is the magnetic symmetry discussed in Section 3.4. We have
now added matter to the mix as well, but a similar argument goes through and tells us that there is
indeed a U(1) global symmetry associated with conservation of magnetic charge. It is this magnetic
symmetry of theory B which is dual to the global U(1) symmetry of theory A.

So what is the phase diagram of this system?

n If µ̃� 0, then the φ excitations are massive and decouple, leaving the U(1)gauge symmetry
unbroken, and hence there is a massless photon. This is therefore called the Coulomb
phase.

n For µ̃� 0, meanwhile, the Higgs mechanism means the theory is gapped and the U(1)gauge

is broken. We call this the Higgs phase, for obvious reasons.

Can this be related to what we saw for theory A? Yes! We need to analyze the global symmetry,
and look in a little more detail at the excitations.

n Consider the Coulomb phase. We have already seen from Section 3.4 on page 21 that a
massless photon is equivalent to a compact scalar σ . Moreover, since that duality looks
like f µν =−g2

π
εµνρ∂ρσ , we find that the current of the global U(1) is jµ = g2

π
∂ µσ . This

is the current of the U(1)global shift symmetry σ → σ + constant. Clearly, this U(1)global

shift symmetry is spontaneously broken in the Coulomb phase. The Goldstone boson is σ ,
which is the photon. This exactly matches the behaviour for µ � 0 of theory A!

We should also ask: what are the theory B duals of the logarithmically confined vortices
in theory A? Well, look at the φ excitations. It is a straightforward check that in 2+1
dimensions, the energy of these charged particles due to the electric field lines is again
logarithmic. Hence the particles of this theory are the vortices of the other.

n In the Higgs phase, meanwhile, φ̃ has a non-vanishing VEV. This means we have vortices
here, but in contrast to the vortices we discussed before, these vortices have a finite energy.
One may also check that they are charged under U(1)global. These are dual to the massive
φ excitations of theory A.

One can also deduce that, in the ground state with no vortices, U(1)global is actually
preserved. (Intuitively, the absence of vortices, which are the magnetic charge carriers, this
symmetry is preserved.) This now matches with µ � 0 in theory A.

EXERCISE II.2 Energetics of the Dual Theory

Check the logarithmic energies of φ excitations in the Coulomb phase, and also explain why
it is now possible for vortices to have finite energies in the Higgs phase. Prove that such finite
energy vortices carry integer charges under U(1)global.
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This shows that the phase diagram of theory B, depicted in Figure 9, is identical to that of
theory A with the identification µ ↔−µ̃ .9 We can also see that

φ excitations ←→ φ̃ vortices

φ vortices ←→ φ̃ excitations

earning this duality the name particle-vortex duality.
This fits in nicely with

〈φ〉= 0 ←→
〈
φ̃
〉
6= 0

〈φ〉 6= 0 ←→
〈
φ̃
〉
= 0

which can be seen as follows. Consider, for example, the 〈φ〉 6= 0 phase in which φ excitations have
condensed. The duality tells us that this is equivalent to φ̃ vortices having condensed. Since vortices
are points at which φ̃ = 0, it makes sense that the dual phase has

〈
φ̃
〉
= 0.

−( fµν)
2 + |Dφ |2−|φ |2−|φ |4

µ̃

massless photon,
U(1)global broken,
confined particles

〈
φ̃
〉
= 0

gapped vortices,
U(1)global unbroken

〈
φ̃
〉
6= 0

CFT: WF/XY

Figure 9: The phase diagram of Theory B, showing only the relevant coupling around the critical
point

7. The Critical Point

Our real interest, however, lies not in analyzing the complicated details of the two separate
phases, but in the critical point describing the (supposed) second-order transition between them.
Our central claim is that the CFT sitting at this critical point is actually the same on both sides.

We should emphasize that many phase transitions in nature are first-order. In such a situation, a
theory has two disconnected “vacuum” states, and as we vary parameters in the system, which one
dominates changes. In such a situation, we do not expect to find an interesting conformal theory
describing the transition at the special value of the parameter where they exchange stability. The
much more interesting case is where the transition is second-order, corresponding to a genuine
scale-invariant theory emerging at low energies, containing massless modes. We are claiming that
this is the situation in both the ungauged scalar and Abelian-Higgs theories – and, moreover, that
these conformal field theories are identical.

9Again, this statement is meant very loosely. We should at the very least write δ µ ↔−δ µ̃; but we still don’t know
what numerical factors relate these quantities, or what values of µ, µ̃ we are perturbing around.
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WHAT IS A CFT?

Apart from free (or empty!) theories, it is often hard to get much intuition about conformal
field theories. One reason for this is that we tend to arrive at them as strongly coupled
fixed points in some Lagrangian field theory; but this is a tremendously roundabout way to
characterize them. Another is that scale invariance means that CFTs do not have states with
particles in any familiar sense. It is helpful to at least bear in mind an intrinsic definition of a
CFT that does not make reference to some complicated field theory embedding.

The right way to present a CFT is to look at a list of all of the (local) operators Oi in the
theory.a If you are told the dimension and spin of every operator, then conformal symmetry
fixes the two-point function

〈
OiO j

〉
up to normalization.

However, each
〈
OiO jOk

〉
∝ ci jk is only determined up to a further constant, which

we cannot eliminate by rescaling. Therefore in the CFT data we include dimensions, spin
representations, and three-point functions: (∆i,si,ci jk). It turns out that this is enough to
completely solve the theory: all higher correlation functions can be expanded in terms of two-
and three-point functions! In particular, therefore, this suffices to define a CFT.

The claim of the dualities we are looking at, then, is that two different theories flow
to a CFT which can be given in terms of the same CFT data. In particular, there should be
a one-to-one map of operators at the fixed point. The CFT data also specifies the critical
exponents of the theory in the dimensions of low-lying operators.

As a further aside which we will return to in Section 31 on page 120, we should mention
the bootstrap program [14]. It turns out that the above data cannot be specified totally freely.
There are huge numbers of consistency conditions; this follows from the associativity of the
correlator. This means that by analyzing these, one can derive constraints on the spectra of
arbitrary CFTs. This program is computationally tricky, but very interesting. It seems to
suggest that CFTs may be rare, rigid, isolated objects – not just in the phase diagram of a
particular field theory, but in total generality!

aThis should perhaps say all of the local primary operators, which basically means ignoring total derivatives.

This means that, in theory, we should be able to identify a correspondence between operators in
theory A and B, and show that the critical exponents of the phase transition in both theories coincide.
The first is something we can outline easily enough for the most important operators; the second is
feasible only numerically. In fact, theory A can be studied relatively easily in the ε expansion, but
theory B is much harder to analyze.

Nonetheless, as we emphasized, there is a lattice “proof” of this and overwhelming evidence
that it is correct.

We will finish by presenting an (approximate) operator map for this duality in Table 1. Whilst
thinking about the Ward identity suggests the current is protected, we emphasize there will be
corrections to the map between other operators.

We can add sources for all the operator in Table 1 into the Lagrangian. For example, we can
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Theory A Theory B

jµ = i(φ †∂ µφ −∂ µφ †φ) jµ = 1
2π

εµνρ∂νaρ

|φ |2 −|φ̃ |2

φ(x) monopole operator M (x)

Table 1: Operator map for the duality of the XY model and the gauged XY model

couple both theory to a background (non-dynamical) U(1) gauge field as follows:

SXY[φ ;Aµ ] =
∫

d3x |(∂µ − iAµ)φ |2−µ|φ |2−λ |φ |4 + · · · (7.1a)

Sgauged XY[φ̃ ,aµ ;Aµ ] = SXY[φ̃ ;aµ ]−
∫

d3x
1

4g2 fµν f µν +
1

2π
ε

µνρAµ∂νaρ + · · · (7.1b)

where we emphasize Aµ is again simply a source one can use to probe the theory.
Here, we use the common convention that dynamical gauge fields like aµ are given lowercase

letters, whilst non-dynamical gauge fields like Aµ are given uppercase letters. The duality asserts
that

ZA[Aµ ] =
∫

Dφ eiSXY[φ ;Aµ ] !
=
∫

Dφ̃Da eiSgauged XY[φ̃ ,aµ ;Aµ ] = ZB[Aµ ] (7.2)

where both theories are tuned to the critical point.
We should emphasize that it is impractical to use either Lagrangian description of this CFT.

Both descriptions are strongly coupled. Note that this is a property of the description, and not
necessarily of the CFT. In the next section we will see our first example of a CFT which is strongly
coupled in one description, but which is actually a free theory.
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Part III

3d Bosonization
We describe our first 2+1 dimensional relativistic bosonization duality. This involves understanding
the physics of fermions in three dimensions, and analyzing some subtle questions about gauge
invariance.

8. The Duality

Way back in Section 3.3 on page 17, we discussed a very simple notion of flux attachment, in
which a non-relativistic boson coupled to a Chern-Simons theory at level 1 turned out to be identical
to a fermion. With the notion of an IR duality now established, it is very natural to speculate about
the possibility that there might be a much more exciting version of this duality describing two dual
conformal field theories.

The form this takes is hinted at by the work we did back there; in particular, in Exercise I.6, we
observed the importance of including a |φ |4 term in the bosonic theory in getting the short-distance
behaviour of the theory correct. Inspired by this, we claim the following duality holds:

U(1)1 +XY model ←→ free Dirac fermion (8.1)

where both sides are tuned to a CFT. (In particular, the fermion is massless.) In the notation of (4.4),

1
4π

ada+ |Dφ |2−|φ |4 ←→ iψ̄γ
µ

∂µψ (8.2)

where we conventionally drop the Maxwell term on the left-hand side since its coefficient becomes
small in the infrared.10 This is one of several dualities we will encounter going by the name 3d
bosonization. Whilst the basic idea goes back to [15] and many others, many of the details have
been filled in relatively recently [16, 17].

This is actually a remarkable statement; it’s a far cry from the simple non-relativistic quantum
mechanics of Section 3.3. The theory on the left is a fully fledged strongly interacting conformal
field theory, and a priori doing any computations with it would be totally intractable. However, the
claim of this duality is that the theory on the left-hand side has been tuned to a point where it is a
totally free CFT, containing only a massless Dirac fermion.

We should mention that this is generally believed to be true (and we will see various reasons why,
from basic evidence now to evidence from e.g. supersymmetry breaking later on), but the closest we
have to a proof is probably the “wire construction” [18] in which one direction is discretized, and
each separate line is individually bosonized.

8.1 The Bosonic Theory

Firstly, we should see what global symmetries we can spot based on the UV description of
(8.2). The situation is more or less as with the gauged XY model of Chapter II. The U(1) symmetry

10As we will discuss below, the theory does not have a massless photon any more, so one might argue that the Maxwell
term is less crucial in understanding the dynamics of this theory anyway.
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of the complex scalar φ is gauged, so the only possibility for a non-trivial global symmetry is a
monopole symmetry. You may be wondering whether the theory with a Chern-Simons term still
supports a monopole symmetry, since the manipulations that led us to the construction of the dual
photon relied on us being able to express the action in terms of da. It turns out there isn’t anything
to worry about; see Appendix XI on page 123.

We can play the same game with this bosonic theory as we did with the theory in Chapter II,
deforming the theory with the |φ |2 operator with a large coefficient µ . It will be useful to couple the
theory to a background field Aµ for the monopole symmetry; schematically,

L =
1

4π
ada+ |Daφ |2−|φ |4 + 1

2π
Ada (8.3)

where we have added the BF term discussed in Chapter II. We have also used the notation
Daφ ≡ (d− ia)φ to concisely denote the covariant derivative is for a field with charge 1 under
the dynamical field a.

µ � 0 Phase Subject to a large negative mass squared term, φ develops a vacuum expectation
value. As before, the condensed φ field Higgses the gauge field a, essentially setting it to 0. At low
energies, there is nothing left.

The result is that the partition function in this phase is essentially Z[A] = 1, independent of the
background A.

µ � 0 Phase If we make φ very massive, we can integrate it out. This essentially just means
dropping it from the theory, leaving only a pure Chern-Simons theory called U(1)1. But this
theory, it turns out, is also trivial. We will postpone discussion of the precise sense in which this is
trivial to Appendix XI on page 123. The key result is that a Chern-Simons term actually gives a
(gauge-invariant) mass to the photon proportional to the Chern-Simons level and the gauge coupling.
Since the theory has only a massive excitation in its spectrum, we can drop this at low energies.11

In fact, we can integrate out the field a, which appears quadratically, as follows:

L =
1

4π
ada+

1
2π

Ada =
1

4π
(a+A)d(a+A)− 1

4π
AdA. (8.4)

The partition function in this phase is actually different from what we had above. We find Z̃[A] =
exp(− i

4π
AdA) now has a so-called contact term for the background field A.

8.2 The Fermionic Theory

Meanwhile, the fermionic theory is free, so it is rendered entirely massive if we deform it using
a fermion mass term. Naively, we can take

L̃naive = iψ̄γ
µ(∂µ − iAµ)ψ− µ̃ψ̄ψ . (8.5)

Now obviously, the fact that both phases are gapped matches the bosonic theory. However, it seems
the contact term cannot ever appear.

11Actually, we are being a little quick here, since in general Chern-Simons theories can possess non-trivial structure
at low energy even though there are no light local excitations. We will discuss these issues briefly in Section 12, and
extensively in Section 17. However, U(1)1 is almost as trivial as it gets!
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It turns out that there is a key fact we have overlooked about fermionic theories in three
dimensions [19]. These issues will be the subject of our next section. Let us just quickly preview a
rough outline of the solution; we will clarify various subtleties later on.

Firstly, when we integrate out a Dirac fermion, we actually generate a contact term for the
gauge field. This shift,

L̃ → L̃ +
sign µ̃

2
× 1

4π
AdA, (8.6)

depends on the sign of the mass deformation, and is a Chern-Simons term of level 1
2 . Understanding

what precisely we mean by this incorrectly-quantized Chern-Simons term will occupy us below. It
will be useful, however, to notice one particular aspect of this which makes sense: the dependence
upon the sign of µ̃ .

Consider the Z2 symmetry of time reversal, T : t→−t, or equivalently parity P : x1 7→ −x1.12

The free massless fermion Lagrangian iψ̄γµ(∂µ− iAµ)ψ is symmetric under T and P in any number
of dimensions. However, the mass term ψ̄ψ is odd under both time reversal and parity in odd
numbers of dimensions.

EXERCISE III.1 Discrete Fermion Symmetries

Check the discrete transformation properties of 2+1d fermions described on page 5.

Consequently, if we time-reverse our whole theory, the sign of the mass term changes. This fits
in perfectly with the fact that the Chern-Simons term AdA is clearly odd under both T and P.

Secondly, nothing has told us we can’t include a contact term in a full statement of the duality:

L̃ = iψ̄γ
µ(∂µ − iAµ)ψ− µ̃ψ̄ψ− 1

2
1

4π
AdA. (8.7)

Again, this incorrectly-quantized Chern-Simons term needs explaining.
If we were to assume these modifications were sensible, we see that

µ ←→ −µ̃ (8.8)

matches up the phases with the bosonic theory. This is promising – so let’s try and understand all
these slightly strange contact terms more carefully.

9. Chern-Simons Terms & Anomalies

In this section, we will start off by doing a concrete computation to learn what is left behind
when we integrate out a fermion coupled to a non-dynamical gauge field. Then, we will try and gain
a deeper understanding of the result by introducing the concept of an anomaly.

12Since CPT is a good symmetry of interesting physical theories, and charge conjugation is easy to understand, one
can essentially swap “time reversal” for “parity” in everything we do.
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9.1 The Effective Action of a Fermion

We want to know what happens when we integrate out a Dirac fermion. Consider the path
integral

Z[A;m] =
∫

DψDψ̄ exp
[

i
∫

d3x iψ̄γ
µ(∂µ − iAµ)ψ−mψ̄ψ

]
= det

[
iγµ(∂µ − iAµ)−m

]
(9.1)

corresponding to a Dirac fermion of mass m coupled to a background U(1) gauge field A. We want
to know the effective action for A which remains upon integrating out ψ . We obtain this by defining
Z[A;m] = exp(iSeff[A;m]):

Seff[A;m] =−i logZ[A;m] =−i tr log
[
i/∂ + /A−m

]
. (9.2)

This can now be computed order-by-order in A, using the Taylor expansion of log, as

Seff[A;m] =−i tr log
[
i/∂ −m

]
− i tr

[
1

i/∂ −m
/A
]
− i

2
tr
[

1
i/∂ −m

/A
1

i/∂ −m
/A
]
+ · · · . (9.3)

The term we care about is the one quadratic in A. (The leading term can be normalized away; the
second term is a tadpole diagram which must vanish anyway.)

Graphically, this is represented by the Feynman diagram in Figure 10. The corresponding loop
integral is

Γ
µν(p;m) = tr

∫ d3`

(2π)3 γ
µ

/̀+m
`2−m2 + iε

γ
ν

/̀− /p+m
(`− p)2−m2 + iε

(9.4)

and it contributes to the quadratic effective action the term

Seff[A;m] = · · ·− i
2

∫ d3 p
(2π)3 Aµ(−p)Γµν(p;m)Aν(p)+ · · · . (9.5)

Taking the trace over the spinor indices,

Γ
µν(p;m) =

∫ d3`

(2π)3

2m2ηµν +2miεµρν pρ +4`µ`ν −2`µ pν −2`ν pµ −2ηµν` · (`− p)
(`2−m2 + iε)((`− p)2−m2 + iε)

(9.6)

where the most interesting term is the one containing the antisymmetric tensor εµρν , arising from
the trace of three γ matrices. No such term occurs in four dimensions.

Aµ

p

Aν

p

`

Figure 10: The renormalization of the photon two-point function due to a fermion loop
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Let’s focus on this parity-violating term, since only this term can contribute a Chern-Simons
term. (The other terms can be regularized in the usual manner.) We see that

Squad, parity-odd[A;m] =− i
2

∫ d3 p
(2π)3 iεµρνAµ(−p)pρAν(p)

∫ d3`

(2π)3
2m

(`2−m2 + iε)((`− p)2−m2 + iε)

=− i
2

∫
d3x ε

µνρAµ∂νAρ

∫ d3`

(2π)3
2m

(`2−m2 + iε)((`− p)2−m2 + iε)

To compute this integral, we perform a Wick rotation to evaluate it in Euclidean signature:

Squad, parity-odd[A;m] = 2πSCS[A]
∫ d3`

(2π)3
2m

(`2 +m2)((`− p)2 +m2)

= SCS[A]
m
|p|

arcsin

(
|p|√

p2 +4m2

)

=
1
2

SCS[A]
m
|m|

+O
(

p2

m2

)
(9.7)

where we are neglecting terms which are small for a large mass m. (This is a standard effective field
theory attitude: we expect to describe physics well only at energies below the characteristic scale of
the fields we integrate out. Here, this means we look at momenta satisfying |p| � m.)

This is exactly the result we were touting above: if one integrates out a heavy fermion of mass
m, one generates a Chern-Simons term at the level 1

2 signm:∫
DψDψ̄ exp

[
i
∫

d3x iψ̄γ
µ(∂µ − iAµ)ψ−mψ̄ψ

]
= exp

[
i
∫ signm

2
1

4π
AdA

]
(9.8)

This immediately raises all sorts of questions!

9.2 Anomalies and the Fermion Determinant

In general, when we discuss a quantum field theory, we need to be careful that what we define is
mathematically sensible. Assuming that we are working in an action-based formalism, the non-trivial
issue we must address is whether the path integral is well-defined. Famously, most quantum field
theories require some sort of regularization before we can compute anything. In renormalizable
field theories, this leads directly to a calculable, well-defined procedure to extract physical quantities
which amounts to a prescription for computing divergent integrals.

However, sometimes this process can unearth some surprises. Suppose that the original
(classical) theory had a symmetry group G. It may be that there is no regularization which preserves
the action of G. If this is the case, then we say the symmetry is anomalous. This can be fatal, if
G was supposed to be a gauge group, since then the entire theory is ill-defined. Otherwise, this is
typically a very interesting feature of a theory. One can ask, for instance, exactly how the partition
function Z transforms under the action of G.

Since G is a symmetry of the action S, and Z =
∫

Dφ exp(iS[φ ]), we can deduce that anomalies
can be thought of as arising because the path integral measure Dφ → ADφ transforms non-trivially
under G. Writing A = exp(iδSanom) for some δSanom, we can instead think of the anomalous
transformation as a transformation S→ S+ Sanom. Moreover, locality tells us that we should be
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able to express Sanom as a spacetime integral of a local function of the fields in the theory, or an
anomalous Lagrangian Lanom.

It turns out that the theory of fermions in 3 dimensions is an excellent example of an theory
with an anomaly. The relevant symmetry can be taken to be the Z2 symmetry of time reversal,
T : t → −t. As we mentioned above, a good classical symmetry of the free massless fermion
Lagrangian iψ̄γµ(∂µ − iAµ)ψ in any number of dimensions. However, the mass term ψ̄ψ is odd
under time reversal in spacetimes of odd dimension.

One reason to be suspicious of this symmetry is revealed by thinking about a standard way
to regularize matter theories called Pauli–Villars (PV) regularization, which simply amounts to
adding to the theory auxiliary copies of every field with mass M, and then take |M| →∞ to decouple
it. By artificially giving a duplicate fermion the opposite statistics to the physical one (so that its
propagator has the opposite sign to the physical field), we can cancel UV divergences well enough
for our purposes. In fact, it is very easy to understand what this means from the point of view of the
path integral: we can define the PV-regularized effective action of a fermion of mass m via

SPV
eff [A;m] = Seff[A;m]− lim

M→±∞
Seff[A;M]. (9.9)

However, we have a choice of sign in taking M→±∞, and time reversal maps M→−M. It
is certainly possible that physical quantities could depend upon this sign, and there could be an
anomaly associated with this symmetry.13 And in fact, given the computation we have already
completed, we find that for any non-zero mass m 6= 0, we have a well-behaved effective action for
the gauge field

SPV
eff [A;m] =

signm+ signM
2

SCS[A] (9.10)

which manifestly depends upon the sign of M! We have two choices of regularization, and they lead
to effective Chern-Simons levels as follows:

M→ ∞ :

{
keff = 1 m > 0

keff = 0 m < 0
M→−∞ :

{
keff = 0 m > 0

keff =−1 m < 0
(9.11)

In the massless case m = 0, we cannot integrate out the fermion as it is important at arbitrarily low
energies, but we still have the option of using either regularization.

Notice that using PV regularization, which fully respects gauge invariance, has eliminated the
possibility of ending up with fractional Chern-Simons levels, which would represent a fatal gauge
anomaly. But it has left us with a clear time reversal anomaly and parity anomaly. Defining Z±[A]
to be the partition function of the massless fermion with the regularization M→±∞, we see that the
two differently regularized theories Z± have different phases and are clearly non-equivalent, since
we end up with different effective Chern-Simons levels for the background gauge field under mass
deformations. Essentially, (Z+,Z−) fill out a non-trivial representation of the Z2 symmetry group.

However, it is inconvenient to have to constantly specify which of the two regularization we
are using. Accordingly, we will adopt the convention that we always use the Z− regularization.

13Different regularizations reveal that some analogous choice is always necessary, but Pauli-Villars offers a particularly
clear illustration. If one instead uses dimensional regularization, for example, spacetime symmetries like time reversal
become somewhat subtle.
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Heuristically, this means including a bare Chern-Simons term at level −1
2 :

iψ̄γ
µ(∂µ − iAµ)ψ ≡ “iψ̄γ

µ(∂µ − iAµ)ψ−
1
2

1
4π

AdA′′. (9.12)

However, formally, you can think of the theory as being defined by the choice of a negative-mass
Pauli-Villars regulator. (See Section 12.2 for a little more discussion on this issue.) We will never
explicitly write such a level 1/2 Chern-Simons term.

We can now rephrase our understanding of the anomaly in the language of an anomalous
transformation, since Z+/Z− = exp(iδSanom) where δSanom = SCS[A]. The action of time-reversal
upon the massless theory is to add a Chern-Simons term at level 1! Notice that this is an involution,
since

iψ̄γ
µ(∂µ − iAµ)ψ

T−→ iψ̄γ
µ(∂µ − iAµ)ψ +

1
4π

AdA︸ ︷︷ ︸
anomaly

T−→ iψ̄γ
µ(∂µ − iAµ)ψ−

1
4π

AdA+
1

4π
AdA︸ ︷︷ ︸

anomaly

= iψ̄γ
µ(∂µ − iAµ)ψ (9.13)

after being applied twice.14 Here, all fermions are understood to be regularized using a negative
mass PV regulator.

9.3 Quantization in a Monopole Background

There is another way to uncover the lack of gauge invariance in the above theory, and that is to
ask about what happens if we choose A to be a monopole background. To answer this question, we
need to understand the quantization of fields in such a background. This will prove useful later on,
too.

Our approach is to first understand the spectrum of the conserved angular momentum operators
in such a background for a scalar particle [20]. We will do this in Euclidean signature for simplicity.

Suppose that we have a monopole of charge q̃ ∈ Z in 3 spatial dimensions, and we look at the
quantum mechanics of a spinless particle of electric charge q in its background. Recall, from our
earlier discussion in Section 3.3 on page 17, we expect that the dyonic combination of these two
objects has spin s = 1

2 qq̃. This number s will be important. (Often, q is used for what we call s.)
Consider the quantum mechanical operator

L = r×
(

p−2sA(1)
)
− ser (9.14)

which one may verify has the property that it generates gauge-invariant rotations:

[Li,v j] = εi jkvk for v = x,p−2sA(1). (9.15)

Here, A(1) is taken to be the gauge field of a rotationally symmetric charge 1 monopole, given by
spherical coordinates by

A(1) =

{
1
2(1− cosθ)dϕ in northern hemisphere
1
2(1+ cosθ)dϕ in southern hemisphere

(9.16)

14Technically, the T operator squares to T 2 = (−1)F where F counts fermion number. This does not affect the
Lagrangian, which necessarily contains an even number of fermions.
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which is a perfectly regular bundle. The corresponding magnetic field is B(1) = 1
2r2 er with flux 2π

through the sphere. The transition function for our theory is exp(2isϕ), in the sense that the gauge
transformation linking the two patches is −idlogexp(2isϕ) = 2scosθdϕ . This is single-valued for
half-integer values s, as we expect.

The extra term in L is needed classically to make sure this is a conserved quantity; from the
point of view of single particle physics in the background of the monopole, we would expect

d
dt

(r× ṙ) = r×mr̈ = r× (qṙ× q̃B(1)) = s
d
dt

er (9.17)

which goes back to an 1896 result of Poincaré. However, the physical origin of the angular
momentum is perhaps more illuminating:

EXERCISE III.2 Origins of the Extra Angular Momentum

Show that the extra angular momentum is precisely the angular momentum of the electomag-
netic field

Lem =
∫

r× (E×B) (9.18)

where E is due to the inserted charge q particle, whilst B is the charge q̃ monopole background.

Now [L,r2] = [L,L2] = 0, as L2,r2 are scalars, so as usual we may choose to investigate
wavefunctions which simultaneously diagonalize r2,L2,L3. Thus a complete basis of wavefunctions
exists of the form R(r)Θ(θ)Φ(ϕ). Moreover, neglecting the radial dependence, these must fall into
the usual representations of the so(3) generated by Li, with

L2Y (θ ,ϕ) = l(l +1)Y (θ ,ϕ) and L3Y (θ ,ϕ) = mY (θ ,ϕ) (9.19)

for some l ∈ {0, 1
2 ,1, . . .} and m ∈ {−l,−l +1, . . . , l−1, l}.

In the usual case of the scalar field, each representation with integer l = 0,1,2, . . . shows up
precisely once, and we define Yl,m to be the unique spherical harmonic of the given angular momenta.
Something similar happens in the monopole background, except that now a different set of l are
possible. We label the possible functions as the so-called monopole harmonics15

Ys,l,m(θ ,ϕ) for l = |s|, |s|+1, |s|+2, . . . and m =−l, . . . , l (9.20)

where again, each term occurs exactly once.
This follows from two key observations. Firstly, notice that the L3 = (−i∂/∂ϕ∓ s) equation

enforces

Ys,l,m ∝

{
ei(m+s)ϕ northern hemisphere

ei(m−s)ϕ southern hemisphere
(9.21)

and so m± s are integers. Secondly, one may compute that

L2 =
(

r×
(

p−2sA(1)
))2

+ s2 (9.22)

15These are essentially identical to the spin-weighted spherical harmonics studied elsewhere [21].
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and so l(l +1)≥ s2. One can then explicitly show that there are unique solutions for every allowed
value of l,m as in (9.20).

Therefore, a scalar particle in the background of a monopole naturally lives in the representations

Vs = s⊕ s+1⊕ s+2⊕·· · (9.23)

with the lowest-energy bound state being in the spin s representation, as we expected. The higher
states appear as higher spin excitations of that bound state. (Technically, we should check the r
dependence obeys suitable boundary conditions too, but we neglect this subtlety here.)

Intuitively, the lower bound on the spin arises because of the extra contribution L = · · ·− sr̂
to the angular momentum. (Indeed, this is also where the lower bound arises in the calculation.)
This can be thought of as due to an extra contribution to the angular momentum about the monopole
(along the direction of displacement from the monopole) received by any particle interacting with
its gauge field.

Now what does this tells us about the unit charge fermion in a unit charge monopole background?
Well, the fermion has a bare spin of 1/2. An admittedly slightly slick bit of reasoning suggests that
the quantized system has a Hilbert space

1
2
×V1/2 = 0+ · · · (9.24)

that contains a singlet. This conclusion turns out to be sound. Moreover, this state is actually a
zero-energy mode of the Dirac equation in this background.

An intuitive reason for this is to remember that the Dirac equation, restricted to the 2d sphere,
splits up into left and right chiralities. The usual spectrum has particles with helicity (Jz spin) at the
point (0,0,1) equal to +1

2 for the positive chirality particle, and −1
2 for the negative chirality one.

Therefore, there are modes of total angular momentum l = 1
2 ,

3
2 , . . . for both chiralities, and they are

all mixed by the Dirac operator and generically have non-zero mass terms. But the presence of the
monopole breaks the parity symmetries relating the chiralities, subtracting 1

2 from the helicities of all
modes. Now the spectrum of the positive chirality modes, with helicity 0, consists of l = 0,1,2, . . .
states whilst the negative chirality modes, with helicity 1, may only consist of modes l = 1,2,3, . . ..
Consequently, the Dirac operator – which maps positive chirality modes onto negative chirality ones
– must annihilate the l = 0 mode of the positive chirality spectrum! It simply cannot map them to
anything else.

So what is the issue? Well, now consider the full field theory problem of a fermionic field ψ in a
monopole background. The vacuum state is taken to be |0〉. But there is another state, |0′〉= ψ

†
0 |0〉,

containing a single excitation living in the singlet 0. These are degenerate states.
Now clearly, the electric charge of these two states differs by 1. On the other hand, suppose

time reversal was a good symmetry, along with charge conjugation. Then the two relations∣∣0′〉= ψ
†
0 |0〉 and |0〉= ψ0

∣∣0′〉 (9.25)

are exchanged under CT symmetry, so the states must have physical charges of the same magnitude.
(Normally, in a half-integral spin representation, this would instead be a parity transformation
interchanging the positive and negative spins.) This forces us to ascribe them both charges ±1

2 ; but
this violates gauge invariance.
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Alternatively, we can keep gauge invariance, but the price we must pay is losing complete time
reversal invariance. We effectively privilege one of |0〉 over |0′〉, declaring it to have charge 0. Then
time reversal creates a charge by mapping us to |0′〉. This can be seen by looking at the form of the
time reversal anomaly: a Chern-Simons term + 1

4π
AdA appears, which says that the gauge field A

experiences one extra unit of charge at the location of any charge dA = 2πδ (x− xmonopole). This
extra unit of charge is the fermion zero mode ψ

†
0 .

INDEX THEOREMS

A particularly elegant class of mathematical theorem underlies the result that there is a single
fermion zero mode in the background of a magnetic monopole. So-called index theorems
govern questions about zero-mode counting, and generally tell us the number of zero modes
of some operators on a manifold M are related in some exact way to topological invariants of
the background, plus very particular contributions from the boundary if ∂M 6= /0.

A particularly simple version of these theorems is to consider the 2 spatial dimension
problem of the Dirac operator i /D on the sphere S2, with the round metric. The index is

ind(i /D) = #(positive chirality zero modes)−#(negative chirality zero modes) (9.26)

which counts the difference between positive chirality and negative chirality zero modes. It
turns out that this is given (for a charge q = 1 spinor field) precisely by the magnetic charge,

ind(i /D) =
1

2π

∫
da = q̃ (9.27)

and in fact the lowest, spin s− 1
2 representation, which has dimension 2s = q̃, always consists

of zero modes of the Dirac operator. This also follows from the pairing reasoning implemented
above for the case of the singlet arising at s = 1

2 .
Combined with a check that there are no negative chirality modes (which can be checked

to follow from a positivity criterion), the index is actually enough to perform the counting
of zero modes exactly. But in general, the robust quantity is not the number of zero modes
but the index. This follows from a generalized version of the above pairing argument: one
can argue that one can create and destroy zero modes by smoothly altering mass terms in the
theory, but only from pairs of positive and negative chirality modes.

10. Operator Matching and Spin

In presenting the proposed duality, we have already identified the two conserved U(1) symme-
tries with each other. Accordingly, their currents must also match. This tells us that

1
2π

(?da)µ ←→ ψ̄γ
µ

ψ . (10.1)

This is a protected matching, in the sense that based solely on the UV theory we can write down
precisely what the correspondence is. But these are very special operator in both theories. What
about more general operators?
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One of the striking differences between the relativistic flux attachment we have described in
this section and our previous (much simpler) quantum mechanical version from Section 3.3 is that
we now have to match a theory based on the spinor representation of the Lorentz group with a theory
based on scalar particles. This a priori sounds rather unlikely. The resolution, however, can be
naturally understood by looking at what the operator matching must be and recalling the discussion
of Section 9.3.

Let us focus on understanding the dual of the free fermion operator ψ . The first observation we
make is that this object carries charge 1 under the global U(1) conserved charge of the theory. This
means that its dual must have the same charge under the U(1) monopole symmetry of the bosonic
theory. Hence in particular, we must include a monopole operator M of charge 1.

But the dual operator must also be gauge invariant. This is a problem, since as we discussed
previously the presence of the Chern-Simons term 1

4π
ada means that the monopole operator carries

a gauge charge of size 1. But this is easy enough to address; the field φ has charge 1 too. Hence the
natural guess is that

φ
†M ←→ ψ . (10.2)

This now puts us in precisely the situation of Section 9.3! The gauge-invariant operators in
the bosonic theory are built from of a unit charge scalar field quantized in the background of a unit
charge monopole, and we have already argued that such configurations carry half-integer spins!
Intuitively, the dynamics of the strongly-coupled CFT can project us down onto the lightest 1

2
representation in the combined φ -M system as we flow into the IR, leaving only this spin 1/2
operator surviving. The higher modes are presumably gapped.

This means that the notation φ †M is slightly misleading. In the background of M , there are
two possible φ modes which one can turn on, and they transform into each other under rotations,
filling out a spinor representation. However, since we have suppressed the spinor indices of ψ , it is
consistent to suppress those of φ †M .

Meanwhile, we have already argued that

|φ |2 ←→ −ψ̄ψ (10.3)

in analyzing the phase diagram of the system. How does this square16 with the result of (10.2)?
Well, heuristically, the argument of Section 3.4 points out that indeed MM † could be trivial, and so

φ
†
φ ≈

(
φ

†M
)(

φ
†M

)†←→ ψψ
† ≈−ψ

†
ψ (10.4)

up to subtleties with normal-ordering and so forth.
But note that, unlike the relation (10.1), these identities can be arbitrarily corrected by operators

of matching charges anyway. At strong coupling, it is generally impossible to make precise
statements about issues like numerical coefficients of operators, which in general are regularization-
dependent anyway. (There are exceptions to this, as we will see in the context of supersymmetric
dualities in Chapter VII on page 106.) We should not place too much faith in this kind of reasoning.

16No pun intended.
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11. The Duality, Summarized

We should summarize what we have learned, and give a clear a statement of our claim. We
assert that

|Daφ |2−|φ |4 + 1
2π

Ada+
1

4π
ada ←→ iψ̄γ

µ(∂µ − iAµ)ψ (11.1)

where the fermion determinant is understood to be regularized with a “Chern-Simons term at level
−1

2 ”. The left-hand side is at the Wilson-Fisher-type fixed point arising from tuning the relevant
coupling |φ |2 in the presence of a |φ |4 term.

The underlying operator correspondence is repeated below.

φ
†M ←→ ψ (10.2 again)

|φ |2 ←→ −ψ̄ψ (10.3 again)

The two phases reached by deforming the fixed point Lagrangians as L −µ|φ |2 ≡ L̃ +µ|ψ|2

are described by the contact terms

Leff =

{
0 µ > 0

− 1
4π

AdA µ < 0
(11.2)

as suggested by either classical manipulations on the scalar side, or by considering fermion determi-
nants on the right-hand side.

This is the key claim of this section: there is a second-order phase transition between these two
phases which is mediated by a free fermion, or equivalently a bosonic Chern-Simons-matter system.

12. Aside: Technicalities and More Anomalies

We’ve been glossing over a lot of the finer points of these dualities in favour of trying to focus
on the big picture. However, from a mathematical point of view there are several things to discuss.

12.1 A Brief Note on TQFTs

Pure Chern-Simons theory, with the Lagrangian taken to be exactly

L =
k

4π
ada, (12.1)

is a Topological Quantum Field Theory, in that the action is independent of the metric. None of the
resulting physics can depend on things like the separation of points. This is much stronger than even
the constraints on CFTs. Any physical quantity can only depend upon topological properties of the
observables and the spacetime!

We will discuss these theories in a little more detail in Section 17 and Appendix XI, including
issues like gauge invariance requiring integer k; for now, we will briefly outline the key properties of
the pure Chern-Simons theory U(1)k. (Adding a small Maxwell term proportional to 1/g2 introduces
states of a large mass ∼ kg2, as discussed in Appendix XI. We don’t care about these.)
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Firstly, observe that a0 is a Lagrange multiplier, and its equation of motion is

da = 0. (12.2)

Hence on a topologically trivial manifold (like flat space), and in the absence of any charged
insertions, there is only one state in the Hilbert space. The partition function is simply a phase.
There are still operators – Wilson lines – which can be inserted, and the algebra of those operators is
all that remains of the structure of U(1)k. Essentially, the Aharonov-Bohm effect makes the Wilson
lines into anyonic operators.

Meanwhile, on topologically non-trivial manifolds, there is actually a very rich story to tell
[22, 23].

Topological Degeneracy and Anyons

Let’s work in the gauge a0 = 0. Now the Lagrangian is

L =
k

4π
(ȧ1a2− ȧ2a1) (12.3)

which makes clear that the two fields a1,a2 are canonically conjugate to each other:

[ai(x),a j(x′)] =
2πi
k

εi jδ
(2)(x−x′). (12.4)

Let’s suppose the theory is on a spatial torus, so the spacetime is R× T 2. We will write
x ∈ [0,Lx) and y ∈ [0,Ly) for the torus coordinates. Now we know the a0 always fixes da, so that
there are no local excitations in the theory – they are all pure gauge. It can only be large fluctuations
of some kind that can give rise to physically distinct states.

What other gauge-invariant quantities are there in this theory? We can consider integrals like∫
C a for some curve C, but these still transform by total derivatives which do not generally vanish.

We can do slightly better by enforcing that C is closed, and computing things like

θx =
∮

axdx and θy =
∮

aydy (12.5)

although since da = 0, these are the only non-equivalent quantities available. Now these are also not
necessarily invariant, due to the existence of large gauge transformations under which

ax→ ax +∂x

(
2πnx

Lx
+

2πmy
Ly

)
and ay→ ay +∂y

(
2πnx

Lx
+

2πmy
Ly

)
(12.6)

which means that
θx ∼ θx +2π and θy ∼ θy +2π (12.7)

are periodic. This leads to a standard conclusion: the gauge-invariant observables are the Wilson
lines

Wx = eiθx and Wy = eiθy (12.8)

and that is it!
Now we find that the quantum operators obey [θx,θy] = 2πi/k, and hence

WxWy = e−2πi/kWyWx (12.9)
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so that in particular (Wx)
k,(Wy)

k commute with everything in the theory. The Hilbert space is
the smallest representation of this algebra, and without loss of generality we define states |l〉 for
l = 0, . . . ,k−1 upon which the Wilson lines act as

Wy |l〉= e−2πil/k |l〉 and Wx |l〉= |l +1modk〉 . (12.10)

The striking result is that there are k degenerate states on the torus for U(1)k. Putting the theory
on a higher-genus Riemann surface increases this degeneracy further: a genus g surface has kg states.
This is a robust result – no small deformation of the theory can remove this degeneracy.

There is a nice story that goes with this. Firstly, one can understand the operation

WxWyW−1
x W−1

y = e−2πi/k (12.11)

as corresponding to moving two anyonic particles around each other. This works as follows: suppose
we add a heavy test particle (with electric charge 1) and an anti-particle (with electric charge -1)
to the torus at a point. Now move the particle one way around the torus, then the other, then
back around the first loop, and finally back around the second loop. If you play with this a little,
you should be able to convince yourself that this is equivalent to moving the particle around the
anti-particle. (Mathematically, the world lines have linking number 1 [24].)

Then this result expresses the Aharanov-Bohm effect for anyonic particles. Concretely, electric
charge 1 particles carry a magnetic charge of magnitude 1/k, and therefore we expect a phase of
2π/k when we move one around the other. This is exactly what we get!

Secondly, this sort of description also gives a nice interpretation to the topological degeneracy:
we can reach a new state by pair-creating an anyon and an anti-anyon, moving the anyon around
a loop of the torus, and then annihilating the anyons. The non-triviality of the anyonic statistics
guarantees that one must be able to end up in a physically distinct state.

The Level 1 Theory

As the discussion above suggests, the theory U(1)1 is essentially trivial. There is only ever one
state in the Hilbert space, and the partition function is only ever a phase; there is no dynamics to be
observed.

However, the presence of a U(1)1 theory is not quite entirely trivial. Even defining it requires a
spin structure (or coupling to a spinc field as discussed below). The reason is it possesses a single
line operator (the above Wilson line, placed anywhere) that one can show has spin 1/2. The theory
also comes with a so-called framing anomaly. This can be expressed in terms of a gravitational
Chern-Simons term, as discussed in Appendix B of [25]. Intuitively, whilst the U(1)1 partition
function is a phase, that phase necessarily changes when we mess with the manifold.

Nonetheless, from a dynamical point of view, U(1)1 is irrelevant since it does not alter the
Hilbert space of the theory. We refer to it as "almost trivial".

A Time Reversal Invariant TQFT

One consequence of the triviality of U(1)±1 is that

U(1)2 ←→ U(1)−2 (12.12)
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up to to subtlety that we should add U(1)−1 on the left and U(1)+1 on the right.17

Intuitively, one might reason that time reversal acts roughly like complex conjugation on Wilson
lines in the spectrum, but when the Wilson line obeys W 2

x = 1, it is real. This is a bit of a fairytale,
but it suggests why there might be something special about U(1)k when k = 2.

Concretely, start with the U(1)2 side of the theory, letting

L =
2

4π
bdb+

1
2π

bdB− 1
4π

cdc (12.13)

which indeed also contains a decoupled U(1)−1 sector. Now let b = b′+c′−B and c = c′+2b′−B.
Then

L =− 2
4π

b′db′+
1

2π
b′dB− 1

4π
BdB+

1
4π

cdc (12.14)

takes the form of a U(1)−2 theory, combined with a decoupled U(1)1 sector. (Note that we
have coupled the non-trivial theory to a background field, revealing there is a slightly non-trivial
background term differentiating U(1)±2.)

This is discussed further in Section 3.1 of [26]. (It forms part of a series of non-Abelian time
reversal invariant cases, namely those we will later refer to as U(N)N,2N .)

Aside: ZN Gauge Theory

One other quirky theory to be aware of – though we won’t work with it – is ZN theory. At level
k,

L =
k

4π
ada+

N
2π

adb+
1

2π
adA (12.15)

which at first looks trivial, since the b equation is classically da = 0. But in fact, this "BF theory"
defines (ZN)k gauge theory. This theory only has line operators, but is still non-trivial. It arises from
Higgsing U(1)k with a scalar of charge N, as can be seen by dualizing b.

EXERCISE III.3

What non-trivial gauge-invariant observables exist in this theory? Argue that there is a new
type of ZN symmetry which acts on these non-local operators.

We will not pursue this story here, but this is called a 1-form symmetry. In general, q-form
symmetries (or generalized symmetries) act on q-dimensional objects. Conventional symmetries,
which we would in this language call 0-form symmetries, act on particles, but higher form sym-
metries like this act only on extended objects, in the case above lines or strings. Even the familiar
free Maxwell theory in 4d possesses two such symmetries, one associated with the electric Wilson
lines, and one with the magnetic ’t Hooft lines, and one can even show that there is a mixed ’t Hooft
anomaly between them. (This precisely parallels the situation of the compact boson in 2d, where
there were two U(1) symmetries associated with the vector and axial currents but only one may be
gauged. Moreover, dimensional reduction of 1-form symmetries gives rise to 0-form symmetries,
and one can directly connect these properties of Maxwell theory in 4d with 3d and 2d theories.) See
[27] for an accessible introduction to these ideas.

17Technically, there is a time reversal anomaly associated to the gravitational part of these theories. We won’t discuss
this.
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12.2 Fermion Determinants and the Parity Anomaly

It is worth understanding the parity anomaly of fermions in odd dimensions properly; some
useful references include [28, 29]. Here, we will just outline a couple of issues that crop up.

Firstly, let’s think about the unregularized path integral of the massless theory in Euclidean
signature, that is

det
[
iγµ(∂µ − iAµ)

]︸ ︷︷ ︸
D

. (12.16)

The operator D is Hermitian, and therefore has real eigenvalues; loosely speaking,

detD = ∏
a

λa. (12.17)

Now |detD | is well-defined (in particular, unique) in any regularization scheme; for instance,
|detD |2 can be computed by regularizing a theory of two fermions using two Pauli-Villars fields
of opposite mass. (The regulators are exchanged under T , so their combination is T invariant.)
However, the overall sign of ∏a λa is impossible to uniquely determine, since it in general consists
of a product of infinitely many positive and negative numbers. This leaves us with a choice.

One might now hope that we can just arbitrarily choose Z to be positive for some reference con-
figuration A0, and then continuously define it for other A by changing sign every time an eigenvalue
λa passes through 0. But this would uniquely define a real partition function Z without violating T
symmetry (recalling that T contains a complex conjugation), which must be impossible. In fact, in
the above, we saw that this would violate gauge invariance under large gauge transformations (since
it would give an incorrectly quantized Chern-Simons level). This is indeed the case. Suppose we
follow the above procedure and define As = (1− s)A0 + sA, tracking how many eigenvalues pass
through zero along the way. Now take A to differ from A0 by a large gauge transformation. Then
the gauge-invariance of the Dirac equation guarantees that the set of eigenvalues {λa} (counted
with multiplicity) is the same for both A and A0. But it is entirely possible that an odd number of
eigenvalues have passed through zero along the way – this is called spectral flow. (See Figure 11.
Clearly, since the eigenvalues at the left and right must coincide, this is only possible for infinite sets
of eigenvalues.) Consequently, we can encounter violation of gauge-invariance in the overall sign of
the determinant. In this formulation, the theory has a gauge anomaly and is sick.

Suppose now we used our simple PV prescription with mass M to regularize the determinant.
Then we obtain a regularized expression

det′D ∝ ∏
a

λa

λa− iM
(12.18)

for the determinant, where the factor of i arises in the Wick rotation to Euclidean signature. Now
taking M→−∞,

det′D = |detD |exp
(
− iπ

2 ∑
a

signλa

)
= |detD |exp

(
− iπη

2

)
(12.19)

where η is the Atiyah-Patodi-Singer (APS) η-invariant, which is defined with a regularization such
as

η = lim
s→0

η(s) = lim
s→0

∑
a

signλa|λa|−s (12.20)
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0 s

λ λ

Figure 11: Spectral flow of eigenvalues of Dirac operator under a large gauge transformation,
illustrating one sign change and hence a violation of gauge invariance

for example. (This actually corresponds to ζ -function regularization; one defines it by analytic
continuation from sufficiently large Res.) It is a measure of the spectral asymmetry of the Dirac
operator.

All that remains is to relate η somehow to the Chern-Simons action. In flat space, the result is
that

πη =
∫ 1

4π
AdA (mod 2π) (12.21)

though this is actually modified in curved space; more generally,

πη =
∫ 1

4π
AdA+2CSgrav (mod 2π) (12.22)

where the gravitational Chern-Simons term (which looks like a Chern-Simons term for the spin
connection ωµ ) can naturally be defined by taking a curved spacetime to be the boundary of a
4-manifold (cf. the Chern-Simons case as in Appendix XI)

CSgrav =
1

192π

∫
X

trR∧R (12.23)

and in general is well-defined modulo 2π either in the APS combination appearing in πη , or when
multiplied by 16. (On spin manifolds, it is well-defined modulo 2π on its own.) We will not dress
all the dualities we discuss with the correct gravitational Chern-Simons term, however. See [26] for
a more careful analysis of these issues.

The key point is that now, having come up with a gauge-invariant regularization, the theory no
longer has time-reversal or parity invariance; this is most straightforwardly understood by observing
that the partition function is no longer real. We have a time-reversal anomaly, and it is given by
2× π

2 η = πη = SCS.
We will discuss this for fermions in general representations of more general gauge groups in

Section 22.2.
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12.3 Spin Structures and Spinc Fields

For the more mathematically minded, there is a large objection to be raised to the contents of
both this section and the next. We will try and briefly explain both the concern and its resolution in
this section.

Fermions

Let’s assume we have in our possession an orientable, Riemannian 3-manifold M . (We cannot
define Chern-Simons theory on non-orientable manifolds. We will also mainly use the language of
Riemannian manifolds rather than Lorentzian ones for simplicity.) Imagine first trying to define a
vector field Aµ on this manifold. In order to do that, one has to have a notion of what vector space
A(x) lives in at each point x ∈M . The answer is that A is a section of a vector bundle of SO(3).
This means we divide the manifold up into open patches Uα , and at each point x in each patch we
have some A(α)(x) ∈ R3. Now consider a point x ∈Uα ∩Uβ in the overlap of two patches, so that
we have two values of the field, A(α)(x) and A(β )(x). There is then a compatibility criterion: we
must have A(α)(x) = g(x)A(β )(x) for some g(x) ∈ SO(3).18 The choice of g(x) is specified by the
bundle.

One particularly nice way to think of the choice of SO(3) bundle is simply as a choice of
(oriented) basis of the tangent space R3 at each point of M ; the bundle then once more specifies the
rotations relating different patches. This is the so-called frame bundle. A simple argument shows
that in fact the space of all oriented bases is isomorphic to SO(3).19 One simply fixes a reference
basis B0, and then notes that given another basis B there certainly exists a rotation g with B = gB0;
and then that this is obviously unique. This defines an isomorphism g↔ B.

But now consider the theory of a free fermion (either real or complex for now),

S =
∫

M
d3xiψ̄γ

µ
∂µψ . (12.24)

Recall that the spinor field ψ transforms not under SO(3) but its double cover, Spin(3)∼= SU(2). A
very similar argument to the above tells us that we need to construct a spinor bundle, which we can
do by considering a frame bundle for SU(2) instead. But now we have various questions, like “is
there such a bundle?” and “is it uniquely determined by the vector bundle?” for example.

Let’s assume we have an oriented manifold, with its SO(3) frame bundle. Then there is a notion
called a spin structure, which is simply an SU(2) frame bundle which is compatible with the SO(3)
one.20 It turns out that:

n There need not be a spin structure for a given vector bundle in general dimensions; however,
in three dimensions, orientable manifolds do always have at least one spin structure. (In
general, one requires that something called the second Stiefel-Whitney class of the vector
bundle vanishes.)

18There is also a triple overlap condition, which is actually important for these bundles.
19This makes the frame bundle is a principal SO(3) bundle. The tangent bundle in which A lives is then an associated

vector bundle for the vector representation of SO(3). Specifying one is equivalent to specifying the other.
20What do we mean by "compatible"? Recall that there is a double-cover map ρ : SU(2)→ SO(3). We require that

the SU(2) transition functions g of our new bundle are such that ρ(g) are the transition functions of the old bundle.
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n When there are spin structures, they are in one-to-one correspondence with the homology
group H1(M,Z2) (though there is no canonical bijection between these sets). For instance,
the circle has 2 spin structures whilst a Riemann surface of genus g has 22g spin structures.

Intuitively, choices of spin structure correspond to choices of boundary conditions for a spinor field
ψ . For every loop in the manifold, we can either impose that ψ → ψ when we encircle the loop
(periodic or Ramond boundary conditions) or ψ →−ψ (antiperiodic or Neveu-Schwarz boundary
conditions).

Clearly, in order to even define what a typical fermionic theory means, we must make a choice
of spin structure. This is a bit troubling, since we claimed that a free fermion is totally equivalent to
a bosonic theory U(1)1 +boson, which seems like it does not need a choice of spin structure!

Chern-Simons Theories

So let’s look more closely at the Chern-Simons theories. Clearly, the term

1
4π

∫
ada (12.25)

is not manifestly gauge invariant. In fact, in Appendix XI, it turns out that gauge invariance of the
action is only guaranteed in the presence of a spin structure! Otherwise, it is well-defined only
modulo shifts of π . This means that the path integral without a spin structure is well defined only
for even Chern-Simons levels.

One way this has reared its head is in Section 9.3, where we saw that the monopole operator in
U(1)1 necessarily transforms in a spin 1/2 representation.

SPIN IN ABELIAN CHERN-SIMONS THEORY

Another analysis which supports this conclusion arises from computing the spin of certain
states in the pure field theory. Consider level k Chern-Simons theory. Then a magnetic flux
with magnetic charge 1 can be accompanied by Wilson lines or bosons of total charge k to
give a physical state.

This can be done by a careful quantization, or a careful regularization of the classical
theory. The conserved angular momentum operator in the quantum mechanical theory is

L =− k
4π

∫
xi

ε
i j(a j f + f a j). (12.26)

Suppose we have a background charge density ρ(x), due to the insertion of bosons or Wilson
lines. Then one can solve Gauss’s law as an operator statement. The resulting states are
eigenstates of L, and

L |ρ〉= Q2

2k
|ρ〉 (12.27)

where Q =
∫

d2xρ is the total charge of the state [22]. This anomalous quadratic growth of
the spin (which can be thought of as a one-loop effect in a 1/k expansion) is typical of anyons.

Hence the total angular momentum of our configuration is J = k2/2k = k/2, matching
the above analysis of the monopole background. (Note that Q2 is the quadratic Casimir of the
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charge k representation of U(1). This generalizes to other gauge groups and representations
too.)

Another physical (but still subtle) illustration of this is given in the appendix of [25]. The
subtlety of the action is highlighted by the fact that it is hard to evaluate in the presence of both
magnetic flux/Dirac strings and Wilson lines. Suppose M = T 2×S1, and consider a configuration
with flux

∫
T 2 db = 2π through the torus. The Chern-Simons term means that this has one unit of

electric charge. We can make this gauge-invariant by also inserting a Wilson line exp(i
∫

S1 a) into
the path integral. It turns out that regularizing this line insertion requires a choice of spin structure,
and [25] works through the details which shows that you get an action of 0,π for two different spin
structures.

In each case, it is clear that the presence of both electric and magnetic charge is what makes the
argument fly. Ultimately, this is very little more than the Aharanov-Bohm effect one last time!

The Spinc Solution

One last thing we should mention is that it is in fact possible to generalize our notion of gauge
field in such a way that the U(1)1 Chern-Simons theory is gauge invariant without a choice of spin
structure. One slightly tweaks the quantization condition of the gauge field, allowing

1
2π

∫
C

dA =
1
2

∫
C

w2 (mod Z) (12.28)

where C ⊂M is an oriented two-cycle and w2 is something called the second Stiefel-Whitney class
(which measures the obstruction to choosing two linearly independent vector fields on the manifold).
The technical details don’t matter hugely, but the conclusion does: it gives a unique value to the
path integral for arbitrary integer Chern-Simons level. This all works on any manifold with a spinc

structure, which includes everything in three dimensions.
Assuming you’re happy with the procedure for evaluating the Chern-Simons action as a

boundary term of a 4-manifold X with ∂X =M , you can think of this as follows. There are different
choices for X , corresponding to different spin structures on M , giving either SCS ≡ 0 (mod 2π)

or SCS ≡ π (mod 2π) for the non-spinc theory. But a spinc connection on M specifies that these
different choices of filling manifold X actually have different boundary conditions on a spinc field.
This shifts SCS for half of the fillings, leaving a consistent choice for its value for arbitrary X .

More intuitively, you can think of this as (roughly) gauging the choice of spin structure. This
can be seen by the fact we get to choose the spin structure of the filling X freely when evaluating the
path integral: it’s a gauge choice. We will see this again as we now discuss spinors.

For the duality to work out on spinc manifolds, we’d better have a prescription for evaluating the
path integral of Dirac fermions without a spin structure too! It turns out this does work. Recall that
the choice of spin structure is essentially the choice of boundary conditions for fermions, ψ →±ψ

around each loop of the manifold. But now, if we give ψ charge 1 under a gauge field so that
ψ → eiαψ , and we allow large gauge transformations such that

∫
dα = π around circles, then both

choices of boundary condition are equivalent up to this large gauge transformation. But allowing a
large gauge transformation carrying winding π/2π = 1/2 is intimately related with allowing half-
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integer fluxes 1
2π

∫
C dA ∈ 1

2Z. This is essentially the reason for the tweaked quantization condition
of spinc fields.

The correct statement is that, without a spin structure, we are unable to define the operator /D
acting on a neutral fermion – but given a spinc structure, we can define /D acting a charge 1 complex
fermion. In fact, we can make sense precisely of complex fermions carrying odd charge under a
spinc gauge field.

This fixes the duality to work in a completely spin-structure-ambivalent way.
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Part IV

The Duality Web
We discuss how to obtain new dualities from existing ones, deriving a so-called web of dualities
from our initial ‘seed’ duality. This includes something familiar in the form of particle-vortex
bosonization, as well as some novel dualities.

In two almost simultaneous papers in June 2016, [30] and [25], it was observed that there is a
deep interrelation between the bosonization duality of Chapter III and particle-vortex duality, as
presented in Chapter II. In fact, it turned out that using just a couple of simple operations, it is
possible to derive all sorts of different dualities from a single seed duality. For us, the seed will be
3d bosonziation.

|Daφ |2−|φ |4 + 1
2π

Ada+
1

4π
ada ←→ iψ̄γ

µ(∂µ − iAµ)ψ (11.1 again)

13. Reversing Bosonization

Our first aim in this chapter is to explain how to derive particle-vortex duality from 3d bosoniza-
tion. We will see that there are two key ingredients: gauging global symmetries (making background
fields dynamical by integrating over them in the partition function), and time-reversal.

We are aiming for
|∂φ |2−|φ |4 ←→ |Dφ̃ |2−|φ̃ |4 (4.5 again)

which looks distinctly different from (11.1) since the only scalar field there was gauged and had a
Chern-Simons term. But this is actually not so hard to address.

Suppose that we made the field A in (11.1) dynamical; then the equation of motion of A simply
sets a= 0. This immediately leaves us with a theory like that on the left-hand side of (4.5). Moreover,
we’ve actually just derived our first new duality! We write the schematic Lagrangians as

|∂φ |2−|φ |4 ←→ iψ̄γ
µ(∂µ − iaµ)ψ (13.1)

where the lower-case a is now understood to be dynamical on the right-hand side. In our other kind
of notation for dualities, we might write

WF scalar ←→ U(1)−1/2 + fermion (13.2)

where the heuristic half-integral level is written explicitly to remind us of the regularization we are
using. (Note in (13.1) we do not write such a term.)

This is another type of bosonization relation, and can be thought of as attaching flux to a
fermion in order to turn it into a boson (instead of attaching flux to bosons to make them fermions).
We know that the lowest mode of the fermion in a monopole background will be a spacetime scalar,
so this makes sense; based on (10.2) we would propose

φ
† ←→ M ψ . (13.3)
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The global symmetries still match, of course, with both theories still possessing a U(1) symme-
try. Now the bosonic theory has a simple φ → eiαφ rotation, whereas the fermionic theory has a
monopole symmetry. We could alternatively derive this by adding a term 1

2π
AdB to (11.1) before

making A dynamical. On the right-hand side, this clearly becomes a standard monopole coupling.
On the left-hand side, meanwhile, we see that the equation of motion of A sets a =−B. Hence in
fact we deduce that

|(∂µ + iBµ)φ |2−|φ |4 +
1

4π
BdB ←→ iψ̄γ

µ(∂µ − iaµ)ψ +
1

2π
Bda (13.4)

where, slightly surprisingly, we have given the field φ a negative charge under the global U(1). This
actually matches up perfectly with the situation in (13.3).

This sign does not really matter: the theory of the boson has an obvious charge-conjugation
symmetry we can use to simply swap φ ↔ φ †, effectively redefining the theory to have the opposite
charge under B.

What about the phase diagram of these theories? We know they must match, but it would be
nice to know what kind of transition we are capturing. Let us begin on the left-hand side. Here, if
we deform using the relevant operator L →L −µ|φ |2, then we find:

n µ � 0 leads to an empty theory with only the contact term

Leff =
1

4π
BdB, (13.5)

whilst
n µ � 0 leads to a theory with a Goldstone boson associated to α in φ → eiαφ , where the

shift symmetry is coupled to B. B also still has its contact term:

Leff = (∂µα−Bµ)
2 +

1
4π

BdB. (13.6)

(If B were dynamical, the Higgs mechanism would kill it, after it ate the α mode.)
Meanwhile, on the right-hand side, L →L − µ̃|ψ|2 leads to either

n µ̃ � 0 leads to a free photon a coupled via a BF term to B,

Leff =
1

2π
adB, (13.7)

or
n µ̃ � 0 leads to a theory with Lagrangian

Leff =−
1

4π
ada+

1
2π

Bda≡ 1
4π

BdB, (13.8)

where we have solved the a equation of motion directly as we have done previously.
Clearly, µ � 0 and µ̃ � 0 match perfectly.

The situation with µ � 0 and µ̃ � 0 perhaps seems a little more subtle. The first thing to
appreciate is that the Goldstone boson of the bosonic theory can be realized as a dual photon to
a dynamical field b. Rewritten in terms of this variable, the Lagrangian becomes simply 1

2π
bdB+

1
4π

BdB. This almost matches the situation in the fermionic theory, except for the contact term.
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But this is not a problem at all. The equation of motion of b actually imposes a constraint on the
background field B: it sets B to be pure gauge. This guarantees that we can simply ignore the contact
term, since it will never contribute for any value of B.

Hence
|φ |2 ←→ −ψ̄ψ (13.9)

completes our analysis of this duality.
Writing all this in terms of partition functions, we have learned that∫

DaDφ eiSBF[A;a]+iSCS[a]+iSscalar[φ ;a] =
∫

Dψ eiSfermion[ψ;A] (13.10)

implies∫
DADaDφ eiSBF[A;B]+iSBF[A;a]+iSCS[a]+iSscalar[φ ;a] =

∫
DADψ eiSBF[A;B]+iSfermion[ψ;A] (13.11)

and then we simplified the left-hand side (relabelling A→ a on the right-hand side) to give∫
Dφ eiSCS[B]+iSscalar[φ ;−B] =

∫
DaDψ eiSBF[a;B]+iSfermion[ψ;a] (13.12)

which was our result. Charge-conjugating the scalar allows the similar conclusion∫
Dφ eiSCS[B]+iSscalar[φ ;B] =

∫
DADψ eiSBF[A;B]+iSfermion[ψ;A]. (13.13)

14. The Trick: Particle-Vortex Duality from Bosonization

This is progress, but it was not quite what we were aiming for. We still do not have a gauged
Wilson-Fisher theory without a Chern-Simons level. But looking at (13.4), we can easily find one.

If we were to play the same game as before, and make B dynamical, we would end up with a
Wilson-Fisher theory coupled to U(1)1. But there is nothing to stop us simply subtracting off the
background contact term SCS[B] before we promote B to a dynamical field – provided we do so on
both sides of the duality!

This means gauging the duality

|DBφ |2−|φ |4 ←→ iψ̄ /Daψ +
1

2π
Bda− 1

4π
BdB (14.1)

(where for convenience we have also charge-conjugated the boson) by promoting B→ b. We find

|Dbφ |2−|φ |4 ←→ iψ̄ /Daψ +
1

2π
bda− 1

4π
bdb

≡ iψ̄ /Daψ +
1

4π
ada (14.2)

by solving for b using its equation of motion. This is intriguing – but we would like to be able to
further dualize this right-hand theory back to an ungauged scalar.

This sounds plausible; the right-hand theory describes fermions with flux attached. Yet it has
an extra Chern-Simons term SCS[a] relative to (13.4); this is the theory we would call U(1)+1/2 +

fermion instead of U(1)−1/2 + fermion. But these are related – by time-reversal invariance!

56



P
o
S
(
M
o
d
a
v
e
 
2
0
1
8
)
0
0
1

Dualities in 2+1 Dimensions

Indeed, our trick is to apply time-reversal to (13.4). The anomalous transformation of the
fermionic theory leads to the result

|DBφ |2−|φ |4− 1
4π

BdB ←→ iψ̄ /Daψ +
1

4π
ada− 1

2π
Bda (14.3)

which we can directly apply to (14.2) (sans background terms for now) to find exactly the result we
wanted:

|Dφ |2−|φ |4 ←→ |∂φ |2−|φ |4 (14.4)

in agreement with (4.5).

EXERCISE IV.1 Particle-Vortex Duality from Bosonization

Check that the background terms work out as they should. Confirm that the particle-vortex
operator matching follows from that of the bosonization dualities.

Thus, particle-vortex duality is a direct logical consequence of 3d bosonization:

3d bosonization =⇒ particle-vortex duality. (14.5)

There does not seem to be a natural way to reverse the implication here, however; it is logically
possible for particle-vortex duality to hold, but 3d bosonization to fail.

Nonetheless, we can think of it as a rather non-trivial piece of evidence in favour of 3d
bosonization that we can derive another (more familiar) duality from it. We could certainly have got
nonsense out of these manipulations, a priori, but instead we have landed on our feet.

Since particle-vortex duality follows from applying the bosonization duality twice, combined
with time-reversal, one might be tempted to write

particle-vortex duality = |3d bosonization|2 (14.6)

where complex conjugation represents time-reversal.

3D DUALITIES FROM SL(2,Z) IN 4D

Actually, the operations which we are implementing to move between dualities can be related
to the action of the famous SL(2,Z) symmetry group which acts on 3+1 Maxwell fields. This
is part of an older story to do with understanding boundary conditions for 3+1d gauge fields
[31, 32]. A full discussion of this can be found in [25], but it is nice to understand the general
idea.

The first ingredient is to recall that in 3+1d, the electromagnetic action

S =
∫

d4x
(
− 1

4g2 FµνFµν +
θ

32π2 ε
µνρσ FµνFρσ

)
(14.7)

allows for a θ term, and that one can define the complex coupling parameter

τ =
θ

2π
+

2πi
e2 (14.8)
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which lives in the upper half-plane and naturally parametrizes the theory. Electromagnetic
duality of the by now familiar type exchanges F for its dual F̃ (or A for Ã) and, as you might
like to check, maps

τ 7→ S(τ) =−1
τ

. (14.9)

Another transformation which leaves the theory invariant (at least on a spin manifold, a
subtlety we will not explore) is θ → θ +2π or

τ 7→ T (τ) = τ +1 (14.10)

which combines with S to generate a group of transformations SL(2,Z). This is the S-duality
group of the 3+1d theory. (Note that −1 ∈ SL(2,Z) acts trivially on τ but not on the theory;
one may verify it acts as charge conjugation, A→−A.)

One may now prove that, in the presence of a boundary, this group of dualities now
acts on the restriction of the gauge group to the boundary in a non-trivial way. In fact, the
generator S acts by adding a BF to a new dynamical field. Meanwhile, T simply adds a
Chern-Simons term of size −1 to the action. These are precisely the operations we have been
working with.

Now one proposes that one can couple the 3+1d theory defined on a half-space to (say)
a Wilson-Fisher boson on its 2+1d boundary whilst preserving S-duality at the point τ = i.
(This is not supposed to be obvious!) This can be thought of a description of a topological
insulator [25]. If one has this, then one can deform away from the S-dual point to get one
weakly-coupled and one strongly-coupled 3+1d theory. S-dualizing the strongly coupled
theory leaves two arbitrarily weakly-coupled theories which are now dual. Freezing the
weakly-coupled fields as background fields now gives bosonic particle-vortex duality. One
can construct a similar story for other dualities.

(There is also nice way of thinking about these dualities as different choices of basis for
the electromagnetic charge lattice of the same theory; S,T act on this basis. In this picture,
for instance, the Aharanov-Bohm effect tells us that some choices will be fermions and some
will be bosons. Theories with hidden T-reversal symmetry and simply those for which an
asymmetric basis of the lattice is chosen.)

EXERCISE IV.2 Gauge Fields on Both Sides

Show that, assuming that there is a fixed point for these theories in the IR, we should find a
duality

U(1)2 +WF boson ←→ U(1)−3/2 + fermion (14.11)

i.e.
|Daφ |2−|φ |4 + 2

4π
ada ←→ iψ̄ /Dbψ− 1

4π
bdb. (14.12)

Argue that this fixed point has a global O(2) symmetry. (We will return to this example in
Section 19.4 on page 81.)
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15. A New Duality: Fermionic Particle-Vortex Duality

We seem to have a new favourite game to play! Let’s make a list of the tricks we have thought
up so far.

n Gauging global symmetries by promoting background fields to dynamical ones.
n Adding background contact terms to both sides of a duality.
n Time-reversing a duality.

We have not nearly exhausted all the possible theories we can derive using this kind of approach!
One obvious possibility we have not yet come across is a purely fermionic duality. We can

engineer this by playing similar sorts of games to the above. Let’s start with

|D−Bφ |2−|φ |4 + 1
4π

BdB ←→ iψ̄ /Daψ +
1

2π
Bda (13.4 again)

and look at the left-hand side. As we discussed above, if we simply promote B→ b to a dynamical
field, then on the right-hand side we simply set a = 0 and obtain the U(1)1 +boson↔ free fermion
duality again. This doesn’t tell us anything new.

But if we use our ability to add background terms, then we can make some interesting. Specif-
ically, suppose that we add − 2

4π
BdB− 1

2π
BdC to both sides of (13.4) before making B→ −b

dynamical, with a change of sign for convenience. Then we obtain instead

|Dbφ |2−|φ |4− 1
4π

bdb+
1

2π
bdC ←→ iψ̄ /Daψ +

1
2π

bda− 2
4π

bdb+
1

2π
bdC

which is a bit of a mouthful. Nonetheless, the left-hand side is now U(1)−1 +boson which we can
relate to U(1)1 +boson using time-reversal.

The time-reversal of the seed duality (11.1), using (9.13) and also charge-conjugating the
fermion, is

|Daφ |2−|φ |4− 1
4π

ada− 1
2π

Ada ←→ i ¯̃ψ /D−Aψ̃ +
1

4π
AdA (15.1)

and applying this to the above duality we find

iψ̄ /Daψ +
1

2π
bda− 2

4π
bdb+

1
2π

bdC ←→ i ¯̃ψ /DCψ̃ +
1

4π
CdC (15.2)

which is our first fermion-fermion duality.
If we are willing to work with incorrectly quantized Chern-Simons terms, we may as well

subtract off − 1
8π

CdC:

iψ̄ /Daψ +
1

2π
bda− 2

4π
bdb+

1
2π

bdC− 1
2

1
4π

CdC ←→ i ¯̃ψ /DCψ̃ +
1
2

1
4π

CdC (15.3)

where the right-hand theory is actually time-reversal invariant.
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EXERCISE IV.3 Hidden Time Reversal Invariance

Check that the left-hand theory is also T-invariant, writing down the action of T on all the
fields. Show that this transformation squares to the identity (on-shell).

As pointed out in [25], this makes contact with various proposals [33, 17, 16, 34] of a fermionic
particle-vortex duality that is believed to exist for reasons originating in the quantum Hall effect
(discussed briefly in Chapter IX). In particular, if one were to naively integrate out b using its
equation of motion – setting b = (a+C)/2 and therefore violating the charge quantization – one
would conclude

“iψ̄ /Daψ +
1
2

1
4π

ada+
1
2

1
2π

adC ←→ i ¯̃ψ /DCψ̃ +
1
2

1
4π

CdC′′ (15.4)

with various incorrectly quantized terms on the left-hand side. These are the sort of issues that
affected the previous formulations of this duality, but it does convey the sense of a duality along the
lines of “U(1)0 + fermion↔ free fermion”.

Another interesting formulation of (15.3) comes from setting C = 2c to be an even multiple of
a correctly quantized dynamical gauge field. If we do this, including also a negative BF coupling of
c to a new background field A, then (15.3) becomes

iψ̄ /Daψ +
1

2π
bda− 2

4π
bdb+

2
2π

bdc− 2
4π

cdc− 1
2π

Adc ←→ i ¯̃ψ /D2cψ̃ +
2

4π
cdc− 1

2π
Adc

or, shifting c→ c+b, we find

iψ̄ /Daψ +
1

2π
bd(a−A)− 2

4π
cdc− 1

2π
Adc ←→ i ¯̃ψ /D2cψ̃ +

2
4π

cdc− 1
2π

Adc

so that the b equation of motion enforces a = A. Renaming the dynamical gauge fields, we conclude

iψ̄ /DAψ− 2
4π

cdc− 1
2π

Adc ←→ i ¯̃ψ /D2cψ̃ +
2

4π
cdc− 1

2π
Adc (15.5)

which is another form of this fermionic particle-vortex duality [35]. Note that the explicit Chern-
Simons term on the right-hand side cancels the implicit −1

2
1

4π
(2c)d(2c) term built into the regular-

ization of the charge 2 fermion. We can therefore write it as

free fermion+decoupled U(1)−2 ←→ U(1)0 + charge 2 fermion (15.6)

which is now a much more precise statement, very close to the earlier proposal of [33]. (The latter
discussion missed the decoupled topological sector on the left-hand side, which is important to
correctly reproduce more subtle properties of the right-hand theory.)

16. More Matter and Self-Dual Theories

We can actually add another trick to the list at the start of Section 15 on the previous page:
multiplying different partition functions together! This simply means adding two non-interacting
theories; of course, we can subsequently couple them together by making use of their background
fields.
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16.1 Self-Dual QED with Two Fermions

It has been proposed [36, 37] that 2+1 dimensional quantum electrodynamics is in fact self-dual.
This exercise will guide you through deriving this result, following [26, 30].

EXERCISE IV.4 Self-Dual QED from Fermion Particle-Vortex Duality

Making use of (15.2) twice, demonstrate that

iψ̄1 /DA+X ψ1 + iψ̄2 /DA−X ψ2 +
1

4π
(A+X)d(A+X) (16.1)

is dual to

iχ̄1 /Daχ1 + iχ̄2 /Da′χ2 +
1

2π
adb− 2

4π
bdb+

1
4π

a′da′+
2

4π
b′db′− 1

2π
a′db′

+
1

2π
(b−b′)dA+

1
2π

(b+b′)dX . (16.2)

Find appropriate background terms to add and subtract before gauging A to deduce that

Ls.d. QED = iψ̄1 /Da+X ψ1 + iψ̄2 /Da−X ψ2 +
1

4π
ada+

1
2π

adY − 1
4π

Y dY (16.3)

←→ L̃s.d. QED = iχ̄1 /Db−Y χ1 + iχ̄2 /Db+Y χ2 +
1

4π
bdb+

1
2π

bdX− 1
4π

XdX

and deduce that U(1)0 +2 fermions is self-dual, with the currents exchanged as X ↔ Y . (We
haven’t proved that this theory has a non-trivial CFT as a fixed point, but this argument
suggests if there is, one should be able to reach it in two different ways.)

This result is intriguing, because the first theory has a manifest SU(2) global symmetry rotating
ψi, and the latter theory has a manifest SU(2) global symmetry rotating χi′ – but these are not the
same SU(2) group!21

Let’s look at the left-hand theory. The manifest global symmetry on the left-hand side is
SU(2)×U(1), where ψ is in the fundamental of the SU(2), whilst the other U(1) is a monopole
symmetry coupled to Y . If we couple the SU(2) symmetry to a background SU(2) gauge field
x = xIσ I , then we see that x3 couples to ψ in the same way as X . In fact, X couples to the
U(1)⊂ SU(2). (The σ3 generates the Cartan subalgebra.)

EXERCISE IV.5 The Exact Global Symmetry

Show that including charge conjugation (specifically one under which Ψi→ εi jΨ̄
j) enhances

the symmetry slightly to SU(2)×O(2). On the other hand, argue that all gauge-invariant
operators either have even charge under both X and Y , or odd charge under both. The manifest
global symmetry which acts faithfully is therefore

(SU(2)×O(2))/Z2. (16.4)

21This discussion follows those in [26, 38].
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Thus we can write the apparent global symmetry of the left-hand side as (SU(2)X ×O(2)Y )/Z2.
Similarly, of course, the right-hand side has an apparent symmetry (SU(2)Y ×O(2)X)/Z2. This is a
classic example of symmetry enhancement in a self-dual theory22: if one assumes that the above
theory flows to a non-trivial CFT in the IR, the full quantum symmetry of that CFT should actually
include the larger group

(SU(2)X ×SU(2)Y )/Z2 ∼= SO(4) (16.5)

which is not manifest in either of the classical Lagrangians. Yet there it is! In each framework, one
of the SU(2) symmetries is an emergent IR symmetry.

Actually, the duality tells us about an extra Zdual
2 factor which is a symmetry of the theory,

under which X and Y charge is exchanged. One can check that

SO(4)oZdual
2
∼= O(4) (16.6)

is therefore the full symmetry group.
We should emphasize that emergent symmetries like these SU(2) factors are a property of the

low-energy modes only; the gapped modes in each theory need not have this symmetry. The idea is
that as we flow to the IR, we are left with only a subset of the full UV theory possessing a larger
symmetry group than the UV theory.

EXERCISE IV.6 Larger Charges

Suppose we modify the above theory by giving one of the fermions charge q. Surprisingly,
this model retains self-duality [36, 38]. Prove that the usual fermion-fermion dualities imply
that

iψ̄1 /Daψ1 + iψ̄2 /Dqaψ2 +
q2 +1

2
1

4π
ada (16.7)

is indeed self-dual, and give the correct coupling to background fields.

16.2 Self-Dual QED with Two Scalars

Similarly, we can work with

Lscalar = |Daφ1|2−|φ1|4 + |Da−Cφ2|2−|φ2|4 +
1

2π
adA. (16.8)

Notice that this has very little symmetry in the UV compared to the above fermionic theories; only
something like U(1)×U(1)×Z2 is manifest acting upon the fields (where the Z2 factor we include
exchanges φ1↔ φ2). However, it is dual to

Lscalar ←→ iψ̄1 /Dbψ1 +
1

2π
bda− 1

4π
ada (16.9)

+ iψ̄2 /Db′ψ2 +
1

4π
b′db′− 1

2π
b′d(a−C)+

1
4π

(a−C)d(a−C)+
1

2π
adA

by (14.1). Integrating out a imposes b′ = b+(A−C), and so this simplifies to

Lscalar ←→ iψ̄1 /Dbψ1 + iψ̄2 /Db+(A−C)ψ2 +
1

4π
(b+A)d(b+A). (16.10)

22Recall, for instance, that a 2d compact boson at the self-dual radius has a hidden SU(2) symmetry.
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If we write A = Y −X and C = X +Y and then shift variables using b = a+X , we reduce to

Lscalar ←→ iψ̄1 /Da+X ψ1 + iψ̄2 /Da−X ψ2 +
1

4π
(a+Y )d(a+Y ). (16.11)

which is (remarkably!) exactly the same theory as we discussed in Section 16.1, differing only by a
background term for Y .

Thus taking this background term into account, we conclude that

LEP = |Daφ1|2−|φ1|4 + |Da−(X+Y )φ2|2−|φ2|4 +
1

2π
ad(Y −X)− 2

4π
Y dY (16.12)

flows to an identical fixed point to that discussed in the previous section. But that theory has the
property that it is invariant under X ↔Y , and therefore so does this one, revealing a duality between
LEP and

L̃EP = |Daφ̃1|2−|φ̃1|4 + |Da−(X+Y )φ̃2|2−|φ̃2|4−
1

2π
ad(Y −X)− 2

4π
XdX . (16.13)

The subscript "EP" is used because we sometimes use the name easy-plane theory to describe the
theory of two scalars subject to the asymmetric |φ1|4 + |φ2|4 potential.23

We have rather remarkably stumbled upon a duality between two self-dual theories. Labelling
them with their manifest UV symmetries, we get the following set of dualities:

L̃s.d. QED︸ ︷︷ ︸
GUV = SO(2)×SU(2)

Z2

←→ Ls.d. QED︸ ︷︷ ︸
GUV = SU(2)×SO(2)

Z2

←→ LEP︸︷︷︸
GUV =U(1)2×Z2

←→ L̃EP︸︷︷︸
GUV =U(1)2×Z2

In the easy-plane theories, the Z2 factor either exchanges φ1↔ φ2 or φ̃1↔ φ̃2. Meanwhile, the Z2

quotient reflects the fact that the objects again carry even charge under X +Y . Again, we conclude
that despite the small symmetry group visible in the UV of the easy-plane theories, there is an
emergent O(4) symmetry in their IR. Again, we must stress there is no proof here that there is
actually a CFT with these properties which we can reach by tuning the above UV Lagrangians. Yet
the above reasoning does suggest that there ought to be some interesting structure in these theories.

WALKING ON THE LATTICE AND THE BOOTSTRAP

The question of whether a genuine, unitary CFT exists with these properties – and whether
this can be obtained by tuning the above Lagrangians appropriately – is a fascinating and
subtle one. Such questions have often proven somewhat controversial.

There are at least two tools one might reasonably turn to in an attempt to address these
issues. Perhaps the most obvious thing we could try is a direct numerical simulation. In
particular, a lot of effort goes into trying to find these CFTs in lattice simulations, and even
estimating anomalous dimensions of various operators. Hints of these sorts of enhanced
symmetries have indeed been seen in lattice experiments [40], although it is notoriously

23The model with an explicit SU(2) symmetry is also supposedly self-dual, but with a different fermionic dual: namely
one at the so-called Gross-Neveu fixed point with |ψ|4 interactions. This is claimed to possess an even larger SO(5)
symmetry at the fixed point [39].
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difficult to obtain conclusive results about these strongly interacting field theories, and
simulations typically extend only to lattices with on the order of 20 sites along each axis.
Essentially, one tries to identify the location of a phase transition, checking to see if it is
continuous or first-order; then, assuming one finds a continuous phase-transition, one uses the
scaling behaviour of correlation functions near that point to extract anomalous dimensions.
This has met with some success, giving indications of this type of enhanced symmetry:
miraculous agreement between the apparent dimensions of naively unrelated operators.

The other approach is something we alluded to in the introduction: the conformal
bootstrap. This proceeds by using the fundamental properties any unitary CFT must obey,
and some input data such as the symmetry group of a theory, and the existence of a relevant
coupling in some representation of that symmetry group. One can then attempt to analytically
or (more often) numerically investigate the equations imposed by conformal symmetry to see
if the input data is consistent. This is in principle a mathematically rigorous approach to the
problem, though one must be careful about the assumptions about the spectrum which are
made. As reviewed in some detail in [14] (see the references therein for more detail), it seems
like it is mathematically impossible for a fixed point consistent with the properties posited
above to exist.

So what is the explanation for the lattice’s apparent support of the naive hypothesis
that there is a fixed point of enhanced symmetry? There are two key ideas which form an
interesting alternative picture that embraces all the known facts, again discussed briefly in
[14], and presented in more detail in e.g. [41]. The first is the concept of walking. We have
discussed the idea of RG flows a lot, but we have said almost nothing about the speed of
those flows. It is entirely possible that certain RG flows actually ‘walk’ quite slowly. If this
happens, one can naturally find a weakly first-order transition which is very hard to detect on
the lattice, giving rise to the appearance of a second-order fixed-point.

The second idea offers some explanation for why this walking behaviour might arise.
The idea is that, much as in particle physics one finds resonances corresponding to unstable
states at complex values of the energy, perhaps there is a conformal field theory with enhanced
symmetry – it is just non-unitary. Just as resonances can have a very long lifetime if they sit
close to the real axis, so a complex CFT with operators possessing dimensions with small
imaginary parts can cause the RG flow to look (over a wide range of e.g. lattice spacings)
like it is approaching a CFT, even though ultimately it ‘misses’, because the real flow is
constrained to the space of unitary field theories.

In this way, even if our argument for symmetry enhancement does not lead to the
discovery of a genuine duality of unitary CFTs, it may be telling us (a) there is something
interesting to look for in the larger space of non-unitary CFTs; and (b) that we therefore
expect some unusual, yet still fairly universal behaviour at fairly low energies!

16.3 Quiver Theories

Our last generalization in this chapter is to allow for many gauge groups, following [42]. The
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idea is simple enough. Let’s start with N free fermions:

N

∑
i=1
|Dai |2−|φi|4 +

1
2π

Ada+ i+
1

4π
aidai ←→ i

N

∑
i=1

ψ̄
i /DAiψi (16.14)

We have included N background gauge fields to play with. We are going to gauge r linear combina-
tions of them, say ãa (for a = 1, . . . ,r) in such a way that we give the ith fermion charge Ra

i . This
would mean taking Ai = Ra

i ãa. We will assume that Ra
i has the maximal rank of r, so that the only

gauge-invariant products of fermions are products of ψ̄ iψi.
However, it is helpful to keep track of the global currents too. There are N− r ungauged linear

combinations of the Ai to handle, labelled α = 1, . . . ,N− r. Then we can define the matrix Sα
i with

rank N− r such that

N

∑
i=1

Ra
i Sα

i = 0 for a = 1, . . . ,r and p = 1, . . . ,N− r. (16.15)

Then the gauge fields can be decomposed as

Ai = Ra
i ãa +Sα

i Cα (16.16)

where Cα are the remaining ungauged combinations of the Ai. We should also introduce r new
background gauge fields C̃a coupling to the topological currents.

Therefore, the fermionic theory is

Fermionic Theory: U(1)r +N fermions of charge Ra
i (16.17)

with no explicit Chern-Simons terms. The Lagrangian is

Lfermion = iψ̄ i /DRa
i ãa+Sα

i Cα
ψi−

κab

2π
C̃adãb (16.18)

for
κ

ab = ∑
i

Ra
i Rb

i . (16.19)

Notice that the naive Chern-Simons levels of U(1)r are also described by this so-called K-matrix, in
that

N

∑
i=1
−1

2
1

4π
(Ra

i ãa +Sα
i Cα)

2 =−1
2

κab

4π
ãadãb−

1
2

κ ′αβ

4π
CαdCβ (16.20)

where similarly
κ
′αβ = ∑

i
Sα

i Sβ

i . (16.21)

Now the dual description, which is simplified by writing ai = Ra
i aa +Sα

i aα , is

Lboson = |DRa
aaa+Sα

i aα
φi|2 +

κab

4π
aadab +

κ ′αβ

4π
aαdaα +

κab

2π
(aa−C̃a)dãb +

κ ′αβ

2π
aαdCβ (16.22)

which is again quite a mouthful.
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However, if we set aside questions of correct flux quantization for now, then the aa and ãa

equations of motion can be solved and substituted back into the action. This gives

Lboson ≈ |DRa
aCa+Sα

i aα
φi|2 +

κ ′αβ

4π
aαdaα +

κab

2π
C̃adC̃b +

κ ′αβ

2π
aαdCβ . (16.23)

Therefore, up to questions of flux quantization, we can conclude that

Bosonic Theory: ≈U(1)N−r +N WF scalars of charge Sα
i and Chern-Simons levels κ

αβ

(16.24)
is the dual to the above fermionic theory.

Example: QED

A simple example of this is to consider N fermions all coupled to U(1) gauge theory.

Fermionic Theory: U(1)−N/2 +N fermions (16.25)

This theory has r = 1 and R1
i = 1.

We can take the dual to be of the form described in the previous section, with

S1
i =



+1
−1
0
...
0
0


, S2

i =



0
+1
−1

...
0
0


, · · · , SN−1

i =



0
0
0
...

+1
−1


(16.26)

and then

κ
αβ =



2 −1
−1 2 −1

−1
. . . . . .

. . . 2 −1
−1 2


(16.27)

is the K-matrix. The dual is therefore

Bosonic Theory: U(1)N−1 +N WF bosons of charge Sα
i and Chern-Simons matrix κ

αβ (16.28)

This is a special type of theory, known as a quiver. The matter content and gauge group can
be communicated by a so-called quiver diagram using a simple prescription. One draws a circle
for each gauge group factor, often labelling it with the rank of the gauge group; for us, we will
label with n nodes corresponding to the gauge group U(n). One can also include square boxes to
indicate flavour groups. Then, one draws a line between certain pairs of nodes, whether square or
circular. Each line represents (for now) a Wilson-Fisher scalar transforming in the bifundamental
representation of the two attached nodes. The above theory comes out like Figure 12.24

24There is an alternative, circular quiver which one can use to describe the same theory more symmetrically. To obtain
this representation, rather than integrating out the dynamical field under which no matter was charged, we return to
(16.22). There are N gauge nodes, but under the overall U(1) factor all matter is neutral. This is also the U(1) which is
killed by the gauging process.
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1 1 1 1 1 1

Figure 12: The quiver of (16.28) for N = 5. There is one line per boson, with 4 dynamical gauge
fields and 2 flavour nodes at each end. These flavour nodes are actually redundant, since all operators
have the same charge under the U(1) factors associated with the two endpoints

Such quiver theories are widely studied, especially in the context of supersymmetric field
theory dualities. In fact, the duality presented here is non-supersymmetric version of the original
supersymmetric mirror symmetry [43]. We will talk more about mirror symmetry in Chapter VII on
page 106.

EXERCISE IV.7 Operator Matching for the Linear Quiver

Derive the operator correspondence that underlies this duality.

One other reason to be interested in quivers is that they can "deconstruct" higher-dimensional
theories. Imagine starting in 3+1 dimensions, and discretizing one dimension into N copies of 2+1
dimensional theories. Having a separate gauge theory living along each of the N nodes now looks
rather like one of the quivers above. This suggests one might be able to derive 3+1d dualities from
2+1d ones, as suggested for S-duality in [44]. This is a tantalizing direction for future work, though
it is hard to see how to control the physics properly.
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Part V

Level-Rank Duality
In order to move beyond the world of Abelian dualities, we must introduce a famous set of exact
dualities of pure Chern-Simons theory: the so-called level-rank dualities.

17. Non-Abelian Chern-Simons and Topological Field Theories

The interesting part of the dualities we have seen so far has been the dynamics of the matter
fields, either bosons or fermions. However, in moving beyond the Abelian case to study non-Abelian
gauge theory, it turns out there is something to say even about the pure Chern-Simons gauge theories.

In this section, we will improve our understanding of Chern-Simons field theory by introducing
the Chern-Simons term for SU(N)k,

LSU(N)k
=

k
4π

tr
(

a∧da− 2i
3

a∧a∧a
)

(17.1)

and studying the contents of this theory. We will leave to Appendix XI on page 123 questions like
how one shows this is gauge invariant. (The time reversal of SU(N)k is SU(N)−k, of course; parity
acts in the same way. We can take k ≥ 0 if we want.)

17.1 Some Preliminaries

Firstly, we should remind ourself about how non-Abelian gauge theory SU(N)0 behaves in the
absence of a Chern-Simons term. The main thing to remember is that this is actually a strongly
interacting theory, entirely governed by the Maxwell term we will often be too lazy to even write,

LMaxwell =
1

4g2 tr fµν f µν . (17.2)

The general expectation is that this kind of theory has a mass gap of order g2, with all finite-energy
states being glueballs which are heavy colour singlets. Such a theory always confines the charge
of the gauge group: coupling matter to this theory forces the matter to form colour-singlet states
like mesons or baryons. (We will return to this briefly in Section 22.3.) The intuition is that the
field lines linking electric charges do not spread out, but are forced together like flux lines in a
superconductor, forming a string. The energy cost then scales linearly with the length of this string,
preventing charged particles moving far apart.

If we are at energies much below the scale set by g, then we would be totally oblivious to the
existence of the gauge field – the IR limit is trivial. This is to be contrasted with TQFTs, where the
low-energy physics is sensitive to the existence of the gauge group, as we will discuss shortly.

Now the non-Abelian pure Chern-Simons theory SU(N)k is a topological field theory, and has
no propagating modes of any mass at all. As we will discuss shortly, the only physical observables
of this model are a finite number of topological quantities. There is no mass scale at all: it is a CFT.

There is an interesting question, however, about the Maxwell-Chern-Simons theory SU(N)k

with both a Maxwell term and a Chern-Simons term. This is a gapped theory, but there are two
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competing effects involved. There is the mass gap of confinement, arising only from the attractive
gluon-gluon interactions and the energetics of glueball states; however, the quadratic Chern-Simons
term also provides a tree-level mass term of order mtop ∼ |k|g2. This theory therefore also has a
topological mass. These effects are in competition. In fact, the theory ultimately is believed not to
confine – the theory is in the topological phase at low energies.

Finally, a useful bit of notation. There are two independent levels for a U(N) group, since it
has both a U(1) part and an SU(N) part; we write

U(N)k,k′ =
SU(N)k×U(1)k′N

ZN
(17.3)

and U(N)k ≡U(N)k,k. Note that the gauge-invariant theories are U(N)k,k+nN for k,n ∈ Z. This
follows from writing

L =
k

4π
tr
(

ada− 2i
3

a3
)
+

n
4π

tradtra. (17.4)

(The parity of k+n determines whether this is a spin theory or not.)

17.2 Topological Degeneracy and A Trivial Theory

Let’s pick up where we left off in Section 12.1, looking now at non-Abelian theories.
Pure Chern-Simons theory, with the Lagrangian taken to be exactly

L =
k

4π
tr
(

ada− 2i
3

a3
)

, (17.5)

is still a TQFT, and we still have an equation of motion f = 0 which eliminates local degrees of
freedom.

The local operators of the Abelian theory were the Wilson lines Wm = exp(im
∮

a) around each
non-contractible loop. We observed that Wm ∼Wm+k were equivalent, so that there were kg states on
a genus g surface.

What is the analogous story in the non-Abelian case? The answer is most clearly understood
by thinking of the Abelian Wm as corresponding to the Wilson line in the charge m representation
of U(1), and then we find that certain representations should be dropped – those of charge of k or
more. In the non-Abelian case, we can compute the Wilson lines

trR exp(i
∮

aAtA
R) (17.6)

for tA the generators of a general representation R. One again finds that there are interrelations
between these Wilson lines which mean that we do not get contributions from arbitrarily large
representations.

One finds that, on the torus, SU(N)k has a degeneracy of (N + k−1)/k!/(N−1)!.

SOME UNDERLYING REPRESENTATION THEORY

The operators in U(N)k Chern-Simons theory carry an SU(N) representation, and as such
can be labelled by a Young diagram. A single box , for instance, is something in the
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fundamental representation. A row of ` boxes represents the `th symmetric representation,
whilst a column represents a purely antisymmetric representation. A general representation
of SU(N) consists of up to N−1 rows of `1 ≥ `2 ≥ ·· ·`N−1 ≥ `N = 0 boxes:

(17.7)

Note that a column of N boxes would represent an N-fold antisymmetrization, which in SU(N)

leaves only a trivial singlet. In SU(N)k, the width of the diagram is also restricted to `≤ k,
giving the integrable representations. So-called fusion rules generalize the familiar process
of computing tensor products of representations when we multiply objects together: only a
subset of the possible product representations occur. There are n = (k+N−1)!/k!/(N−1)!
such representations, with height at most N−1 and width at most k.

Transporting each species of anyon around a torus gives rise to the above degeneracy.

However, on more complicated surfaces, there is usually not such a simple formula. (See e.g.
[45] for the Verlinde formula giving the general result.) But for k = 1, we find the SU(N)1 theory
has exactly Ng states, just like U(1)N . (This is not a coincidence, as we shall discuss below when
we look at level-rank duality.)

In fact, something interesting happens when we look at the theory U(N)1. This is almost
“trivial” in the same sense as U(1)1. (One can even show that N copies of U(1)1 are equivalent to
U(N)1.) This may seem a little surprising as U(N)1 = SU(N)1×U(1)N/ZN and both SU(N)1 and
U(1)N have N states on a torus. But this simplistic analysis ignores the ZN quotient, and ultimately
a careful analysis shows that we only have a single operator in the theory.

BOUNDARY THEORIES

The above discussion of topological field theories is centered around the 3d perspective, but it
is clear that the bulk of the 3d spacetime is irrelevant. Instead, all of the interesting structure
is associated to non-contractible loops – and in fact, also boundaries.

If one has a theory on a manifold with boundary, then gauge invariance of the bulk
theory requires a particular, non-trivial boundary theory transforming under the gauge group
restricted to the boundary. This is known as the Wess-Zumino(-Novikov)-Witten (WZW)
model [7]. For U(1), it consists simply of a chiral boson. For SU(N)k, it is a non-trivial 1+1
dimensional conformal field theory. The conformal dimensions of operators in this theory
give determine the physics of Chern-Simons theory. including quantities such as the spins
of Wilson lines. (This is natural if we think of a Wilson line as cutting a hole through a
manifold.)

17.3 Aside: Knots

Recall that TQFTs necessarily compute topological invariants. We won’t discuss this in detail,
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but the classic paper [23] of Witten shows that non-Abelian Chern-Simons theory on general
manifolds computes particular polynomials known as knot invariants.

This is a beautiful story: the partition function is a topological invariant of the manifold, and the
expectation value of a product of Wilson lines is given in terms of knot invariants of the configuration
of Wilson lines.

More specifically, in three dimensions, lines can have a linking number measuring how they
weave through one another. Each Wilson line also has an ambiguous self-linking which is fixed by a
so-called framing of the line. (Mathematically, this is a choice of a normal vector along the line.
Pictorially, this is like making the line into a ribbon.) The expectation of a product of Wilson lines
can be expressed entirely in terms of these quantities (together with representation theoretic factors),
with the ambiguity of self-linking being naturally related to the spin of the Wilson line.

It is worth reading [23] to understand this in detail.

18. Level-Rank Duality

The above TQFTs are certainly interesting, and there is a lot one can say about them. In this
section, we are going to explore one of their most fascinating aspects, which is that they obey
level-rank duality:

U(N)k ←→ SU(k)−N (18.1)

This result is quite subtle, but it is possible to get some intuition about why it ought to hold.
Ultimately, the origins of this identity lie in 1+1 dimensional conformal field theory. the fact that

Nk free fermions form a representation of the SU(Nk)1 algebra, whilst also faithfully representing
SU(N)k and SU(k)N . (We could include an overall U(1)Nk on both sides too.) This describes an
embedding

SU(N)k×SU(k)N ⊂ SU(Nk)1. (18.2)

One can then define something called a GKO coset theory

SU(k)N ←→ SU(Nk)1

SU(N)k
(18.3)

in 1+1 dimensions, which ultimately leads to an identification of the Chern-Simons theories

SU(k)N ←→ SU(Nk)1×SU(N)−k

ZN
. (18.4)

By remembering U(Nk)1 is trivial, and writing SU(Nk)1 =U(Nk)1×U(1) where the second U(1)
kills the first but then instead dropping the trivial U(Nk)1 factor, one finds

SU(k)N ←→ U(1)−Nk×SU(N)−k

ZN
=U(N)−k. (18.5)

However, whilst this does point the way to a rigorous proof of the result, it is beyond the scope
of this course to truly understand the above manipulations.
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An Intuitive Sketch in 2+1d

This section comes with a massive health warning for mathematicians (which is to say it is
tantamount to nonsense) but may make the proposal seem less outrageous. Consider the theory
U(Nk)1, taking the gauge field to be a ∈ u(Nk). As we discussed above, this is essentially trivial.
However, it turns out it is in some sense a parent theory from which we will can extract the physics
of both U(N)k and SU(k)−N . Intuitively, we think of elements of u(Nk) as made up of k× k = k2

elements of u(N):

a =



(
· ·
· ·

)
︸ ︷︷ ︸

N

(
· ·
· ·

) (
· ·
· ·

)

(
· ·
· ·

) (
· ·
· ·

) (
· ·
· ·

)
(
· ·
· ·

) (
· ·
· ·

) (
· ·
· ·

)


︸ ︷︷ ︸

k

∈ u(Nk) (18.6)

Suppose that we could enforce that the SU(k) part of the structure was proportional to the identity,
so that a was actually of the form

a =

â 0 0
0 â 0
0 0 â


︸ ︷︷ ︸

k

(18.7)

for some â ∈ u(N). For these configurations, we find that the Lagrangian

LU(Nk)1 =
1

4π

∫
M

tru(Nk)

(
a∧da− 2i

3
a∧a∧a

)
=

k
4π

∫
M

tru(N)

(
â∧dâ− 2i

3
â∧ â∧ â

)
(18.8)

reduces to that for U(N)k Chern-Simons theory. Thus our goal is to implement this constraint.
The problem is that it is clearly not a gauge-invariant constraint! We are privileging a particular
SU(k)⊂U(Nk) when imposing our constraint.

This is a problem we could have seen coming. For pure Chern-Simons theory, the equation of
motion sets the field strength to zero and hence the gauge field is always pure gauge. There are no
local gauge-invariant objects in the bulk of this theory! The constraint we want to impose is really a
constraint on non-local aspects of the theory (that the SU(k) structure of the bundle is trivial) and
possibly on boundary dynamics (if there are any boundaries).

Let us solve the equations of motion by locally representing the U(Nk) gauge field as a
derivative of a group-valued field, a = ig−1dg. We can write e.g. LU(Nk)1 [g] for the Chern-Simons
action of a. What we want is to insist that there is a globally-defined gauge transformation which
maps g to something with no SU(k) structure at the boundary or around loops (i.e. something
proportional to the SU(k) identity).

With this in mind, and glossing over lots of subtleties, let’s take h ∈ SU(k) to act in the obvious
way upon U(Nk) elements, and note that (essentially because of the Polyakov-Wiegmann property,
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cf. (A.4) in Appendix XI on page 123) that

LU(Nk)1 [g]+LSU(k)−N [h] = LU(Nk)1 [g]+LU(kN)1 [h
−1]

= LU(Nk)1 [gh−1]− 1
4π

dtr
[
(ih−1dh)∧ (ig−1dg)

]
One can then change variables to g̃ = gh−1 and argue that the effect of h is precisely to constrain g̃
to have trivial SU(k) structure.

Hence thinking of the right-hand side as being the correctly constrained version of the U(Nk)1

Chern-Simons theory, we see it is equivalent to the trivial theory U(Nk)1 evaluated on general
configurations plus a new SU(k)−N theory!

Now clearly the above is only a very vague sketch of a much more sophisticated argument, but
it hopefully does make the result at least more plausible. Either way, it is a rigorously true statement
that the theory of U(N)k differs from SU(k)−N only by trivial terms (in the sense of U(M)1 theories
and so forth). We can indeed write

U(N)k ←→ SU(k)−N (18.9)

where it is understood that we suppress a trivial sector.

REPRESENTATION THEORY OF LEVEL-RANK DUALITY

You might be curious how such a bizarre correspondence works at the level of a bijection
between operators. It is actually a remarkably elegant story [1], which we will just briefly
allude to here.

Recall from the above that in U(N)k, there are n = (k+N−1)!/k!/(N−1)! integrable
representations – those whose Young diagrams have height at most N−1 and width at most k.

Meanwhile, in SU(k)N (and so in SU(k)−N), we have diagrams of height at most k and
width at most N−1. There are n′ = (N + k−1)!/N!/(k−1)! such representations. It seems
like there is a slight discrepancy between this and the dual theory, with n/N = n′/k. Similarly,
transposing all Young diagram by switching row and column lengths (or equivalently reflecting
in the diagonal) does not quite give a bijection, since we have a discrepancy of 1 in the
width and height limits. However, it turns out that we do not expect a bijection between
representations, but between the orbits of representations under what is called the outer
automorphism group of the gauge group.

The outer automorphism group of SU(N) is ZN , the generator of which acts on the
Young tableau of SU(N)k by adding a row of k boxes to the top of the diagram. Any columns
of N boxes on the left of the diagram may then be removed. You can check that doing this
N times gets us back to where we started. There is now a bijection between the n/N orbits
of the SU(N) theory and the n′/k orbits of the SU(k) theory: we transpose and then add an
appropriate number of k-box rows!

For example, SU(4)2 and SU(2)4 match as follows (where we write • for the singlet
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representation):

• , , , ←→ • ,

, , , ←→ ,

, ←→

Why is it natural that we should have to worry about these extra rows of boxes? Well,
the simplest monopole operator of U(N)k lives in precisely the kth symmetric representation
of SU(N), and the higher ones have Young diagrams consisting of m rows of k boxes. Hence
we can essentially translate the identification of representations up to outer automorphisms
into identification of Wilson lines up to monopole operators.

For now, we will just mention that there are generalizations of what we have discussed to other
gauge groups other than the unitary ones (namely, the orthogonal and symplectic groups). We will
see those briefly in Section 22.1 on page 94.
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Part VI

The Master Duality
Having established level-rank duality for various topological quantum field theories, we can now
look at critical theories representing phase transitions between these TQFTs. It turns out that
bosonization goes hand-in-hand with level-rank duality. We will first explore the first class of such
dualities proposed by Aharony, then look at a more recent generalization.

19. Aharony’s Dualities

Equipped with level-rank duality, we are now ready to couple matter to our non-Abelian gauge
theories. Let’s leap straight in and state three dualities proposed by Aharony in 2016 [46]:

SU(N)k +N f WF scalars ←→ U(k)−N+N f /2 +N f fermions (19.1)

U(N)k +N f WF scalars ←→ SU(k)−N+N f /2 +N f fermions (19.2)

U(N)k,k+N +N f WF scalars ←→ U(k)−N+N f /2,−N−k+N f /2 +N f fermions (19.3)

which are each believed to hold for N f flavours of fundamental bosons/fermions where

N f ≤ N. (19.4)

We will see a reason for this flavour bound later, in Section 19.2. Note that the special case
N = k = N f = 1 of (19.2) refers to the case of Abelian 3d bosonization we studied in Chapter III,
since SU(1) is a trivial gauge group.

Both of these theories must be tuned to a critical point with a manifest flavour symmetry
SU(N f ) that rotates the matter fields. In particular, the scalars φi for i = 1, . . . ,N f are subject to a
potential

V (|φ |2) = µφ
†i

φi +λφ
†i

φiφ
† j

φ j + · · · (19.5)

which is SU(N f ) invariant.25 The coefficient µ must of course be tuned. This is what we have in
mind when we write schematic Lagrangians for the above dualities. For example, (19.2) can be
written as

|Daφ |2−|φ |4 + k
4π

tr
[

ada− 2i
3

a3
]

←→ iψ̄ /Dbψ +
−N +N f

4π
tr
[

bdb− 2i
3

b3
]

(19.6)

where a ∈ u(N) and b ∈ su(k).
Note that most of these dualities are more in the spirit of the duality of a Wilson-Fisher scalar

↔ gauged fermion of (13.1) than of U(1)1 +WF scalar↔ fermion of (8.2), in that in almost every
case both sides are non-trivial interacting field theories. (The exception is k = 1 in (19.2), where we

25The SU(N) gauge indices are suppressed here. In fact there are generally two possible quartic terms with different
SU(N) index contractions [26]; if Mi

j = φ
†i
α φ α

j , then the two options are trM2 and (trM)2. In these lectures we will
generally avoid thinking about the details of potentials, but in Section 19.5 we will see we want trM2 to dominate the
potential, so we propose this is a lower dimension operator.
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have N f free fermions on the right-hand side.) This means the best picture to have in mind is that
there are two distinct UV field theories which can be tuned flow to the same IR fixed point. In fact,
we make a slightly stronger claim, which is that as we vary the coefficient of the symmetric mass
terms |φ |2 and ψ̄ψ , we find a unique fixed point. Hence we postulate that the phase diagram of both
theories looks like Figure 13.

|Daφ |2−µ|φ |2−|φ |4 + kLCS

tune µ

iψ̄ /Dbψ +µ|ψ|2 +(−N +N f )LCS

tune µ

µ

gapped phase 2gapped phase 1
Interacting CFT

Figure 13: The meaning of the duality (19.2). We will analyze the gapped phases in Section 19.2.
Note that the SU(N f )×U(1) symmetry is manifest all the way along the flow, and indeed throughout
this diagram

Since both sides have a global SU(N f ) symmetry, we can couple them to a background gauge
field. In fact, both sides also have a U(1) global symmetry: this is the monopole symmetry of φ in
the U(N)k theory, and the overall phase of the fermion in the SU(k) theory. These combine to form
a global U(N f ) symmetry, and so we introduce a background gauge field A ∈ u(N f ). The correct
expression turns out to be

|Da+Aφ |2−|φ |4 + k
4π

tr
[

ada− 2i
3

a3
]

←→ iψ̄ /Db+Aψ +
−N +N f

4π
tr
[

bdb− 2i
3

b3
]

(19.7)

+
k

4π
tr
[

AdA− 2i
3

A3
]

and we will see how this could be guessed in Section 19.2. The slightly surprising thing about this
is that A does not appear to couple to the monopole symmetry, but instead is attached to the gauged
U(1) symmetry of φ . This can be addressed, and this is the first of part of Exercise VI.1.

Moreover, once we have a handle on this U(1) global symmetry, the door is opened to gauging
it. Remarkably, all of Aharony’s dualities equivalent to each other because they can be related by
gauging a global U(1) symmetry, as discussed in Exercise VI.1.

EXERCISE VI.1 Equivalence of Aharony’s Dualities

(a) By absorbing the U(1) part of A into b, show that in fact A does couple to the
monopole symmetry of the right-hand side.

(b) Assuming one of Aharony’s dualities (19.1)-(19.3), derive a broader class of duali-
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ties [47]

U(N)k,k+nN +N f WF scalars ←→ U(1)n×U(k)−N+N f /2 +N f fermions
(19.8)

that hold for any integer n ∈ Z. (You should find that the fermions are charged under
U(k) and the extra U(1)n factor couples via a BF term to the U(1)⊂U(k).)

(c) Show that Aharony’s dualities are special cases of (19.8) for various values of n,
and derive another special case [26]

U(N)k,k−N +N f WF scalars ←→ U(k)−N+N f /2,−N+k+N f /2+N f fermions.
(19.9)

(d) If you are feeling particularly enthusiastic, feel free to write a generalization with a
general U(1) level for the fermion theory.

(e) How does time reversal interact with (19.7)?

19.1 Fermions and Non-Abelian Gauge Fields

We find ourselves working with a fermion coupled to a non-Abelian gauge field, say

Lbare = iψ̄γ
µ(∂µ − iAµ)−µψ̄ψ (19.10)

where we have also included a mass term. This sort of coupling is subject to the same kind of
subtleties as the Abelian case. Indeed, the computation of section Section 9.1 goes through more or
less unchanged for the quadratic terms, generating a bare effective Lagrangian of

Leff =
sign µ

2
1

4π
trAdA (19.11)

at quadratic order when a fermion is integrated out. But this term is not invariant under non-Abelian
gauge transformations, even if we regularize the theory. But that is fine, since in the language of
Feynman diagrams, there is now also a contribution to the cubic term as depicted in Figure 14.

Figure 14: The renormalization of the photon three-point interaction due to a fermion loop

This generates precisely the cubic term needed to complete the Lagranigan to the level 1
2

Chern-Simons term

Leff =
sign µ

2
1

4π
tr
[

AdA− 2i
3

A∧A∧A
]

. (19.12)
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That means we can use exactly the same approach of adding a Pauli-Villars regulator to preserve
gauge invariance, so that in our conventions

L = iψ̄ /DAψ−µψ̄ψ −→ Leff =

{
0 µ > 0

− 1
4π

tr
[
AdA− 2i

3 A3
]

µ < 0
. (19.13)

19.2 RG Flows Between Dualities

Each of the above dualities comes with an operator correspondence

φ
†i

φi ←→ −ψ̄
i
ψi (19.14)

which holds for each i, with no summation. There is an obvious game we can play: deform both
sides of the duality with this mass term and see where we land in the infrared.

Let’s focus on the duality (19.2)

U(N)k +N f WF scalars ←→ SU(k)−N+N f /2 +N f fermions

in the form of (19.7)

|Da+Aφ |2−|φ |4+ k
4π

tr
[

ada− 2i
3

a3
]
←→ iψ̄ /Db+Aψ+

−N +N f

4π
tr
[

bdb− 2i
3

b3
]
+

k
4π

tr
[

AdA− 2i
3

A3
]

and investigate what happens when we add mass terms.
Firstly, suppose we turn on the SU(N f ) symmetric mass term

δL =−µ|φ |2 =−µ

N f

∑
i=1

φ
†i

φi ←→ δL̃ = µ|ψ|2 = µ

N f

∑
i=1

ψ
†i

ψi. (19.15)

Let us look at each sign of µ in turn:
n µ � 0: In this case, we simply decouple all of the bosonic matter modes, leaving an

effective Lagrangian

Leff =
k

4π
tr
[

ada− 2i
3

a3
]

(19.16)

describing the TQFT U(N)k. Meanwhile, the fermions receive a negative mass, shifting
both the dynamical and background Chern-Simons theories to leave

L̃eff =
−N
4π

tr
[

bdb− 2i
3

b3
]

(19.17)

which describes pure SU(k)−N , again with no background terms. But we already know
these are dual by level-rank duality:

U(N)k ←→ SU(k)−N (18.1 again)

n µ � 0: Here, the physics is a little different. We expect that the bosons acquire a vacuum
expectation value which generically breaks the gauge group

U(N)→U(N−N f ). (19.18)
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In fact, something interesting happens when we remember the background field A. Firstly,
observe that the nature of the Higgs mechanism is such that the gauge fields acquire a mass
term

|∂µφ − iAφ − iφaT |2 = · · ·+ tr |A〈φ〉+ 〈φ〉aT |2 + · · · (19.19)

at low energies. Let us assume we can fix a gauge in which the boson’s VEV takes the
form

〈φ〉=

v 0 0 0 0
0 v 0 0 0
0 0 v 0 0


︸ ︷︷ ︸

N

N f . (19.20)

Then the above mass term forces a to take the values

a =

 −AT 0

0 c

 (19.21)

where c is the unconstrained, dynamical U(N−N f ) field which remains after Higgsing.
Evaluating the Chern-Simons term for a now generates a Chern-Simons term for the
background field A, leaving

Leff =
k

4π
tr
[

cdc− 2i
3

c3
]
+

k
4π

tr
[

AdA− 2i
3

A3
]

. (19.22)

The story on the fermionic side is happily much simpler! We simply scrub out the fermions
in (19.7), leaving

L̃eff =
−N +N f

4π
tr
[

bdb− 2i
3

b3
]
+

k
4π

tr
[

AdA− 2i
3

A3
]

(19.23)

which is dual to Leff by level-rank duality in the form

U(N−N f )k ←→ SU(k)−N+N f . (19.24)

So far so good.
Now let us instead add only a mass term −µ|φN f |2↔+µ|ψN f |2 to both Lagrangians. Note that

this explicitly breaks the global symmetry U(N f )→U(N f −1)×U(1). It is useful to write Ã and
AN f for the corresponding parts of A.

n µ � 0: Clearly, if we turn on a positive mass for the boson, then the only effect on
the bosonic side is to decouple φN f . This leaves us with U(N)k +(N f − 1) WF scalars.
On the dual side, we shift the level of the b Chern-Simons term by 1, landing on
SU(k)−N+(N f−1)/2 +(N f − 1) fermions. This actually reproduces the duality (19.2) but
with parameters (N,k,N f )→ (N,k,N f −1)!

We can also ask what happens to the background terms. On the bosonic side, it is clear that
the variable AN f decouples. The fermionic side receives a correction to the AN f contact
term; since the fermion ψN f is an SU(k) fundamental field, there are effectively k fermions,
and the AN f Chern-Simons term is shifted by −k, leaving nothing behind, matching the
bosonic theory. This again nicely matches (19.7).
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n µ � 0: Alternatively, if we turn on a negative mass squared for the boson, then we expect
that it will partially Higgs the gauge group U(N), breaking it down to U(N−1)k +(N f −
1) WF scalars.26 The fermion meanwhile receives a positive mass and so we can simply
remove it from the Lagrangian without adding any contact terms. It is easy to verify that
this leaves us with SU(k)−(N−1)+(N f−1)/2+(N f −1) fermions. This is precisely the duality
(19.2) with parameters (N,k,N f )→ (N−1,k,N f −1).

Again, the background terms can also be dealt with. We will not work through the details.

(N,k,N f )

(N−1,k,N f −1) (N,k,N f −1)

µ � 0 µ � 0

Figure 15: Flows of the duality (19.2)
upon integrating out a single flavour of
matter.

These flows are depicted in Figure 15. This anal-
ysis applies equally well to the other dualities in this
family too, since they are all equivalent. The fact that
these flows agree forms an obvious consistency check
of the dualities. In particular, even if we integrate out
all of the matter fields one at a time, we still land on the
level-rank duality

U(N)k ←→ SU(k)−N . (18.1 again)

This is an encouraging sign for our proposed dualities, though it is very far from constituting a real
proof of them.

We promised to give some motivation for the flavour bound N f ≤ N in this section. Suppose
instead that N f > N; then we can Higgs N of the scalars and we are left with the case (0,k,N f −N)

which describes N f −N ungauged Wilson-Fisher scalars on one side and SU(k)−(N f−N)/2 coupled
to N f −N fermions in the dual theory. This seems implausible; the fermionic theory seems to have a
phase with the non-trivial TQFT SU(k)−N f +N , but no such phase is visible in the dual theory. We
infer that indeed,

N f ≤ N. (19.25)

19.3 Operator Matching

We have already mentioned how the mass terms map:

φ
†i

φi ←→ −ψ̄
i
ψi (19.14 again)

We also coupled both theories to background fields, which implicitly defines the current correspon-
dence

i(φ †Dµ
φ − c.c.) ←→ iψ̄γ

µ
ψ . (19.26)

This leaves us to understand how to match various interesting gauge-invariant operators like the
fermionic baryon

Õ = ε
α1···αk ψi1α1 · · ·ψikαk (19.27)

across the duality. Note that this lies in the kth symmetric representation of the flavour group
SU(N f ). We know the dual to this must be a monopole operator of the lowest possible charge, from

26Once we have broken the U(N f ) symmetry, it gets even harder to control the potentials generated in this theory. We
will briefly mention the potential in Section 19.5.
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the matching of the U(1) currents. As mentioned in Chapter V, the simplest monopole operators
in U(N)k actually transform in the kth symmetric representation of U(N). To make them gauge-
invariant, therefore, they must be contracted with another appropriate operator in the conjugate
representation. We can easily build such an object from k bosons. Neglecting gauge indices, this
looks like

O = M φi1 · · ·φik (19.28)

which again is also in the kth symmetric representation of SU(N f ). This is exactly how the matching
works; one can even compute approximations to the dimensions of these operators in the limit of
large N [46, 48] and show that they match.

M φi1 · · ·φik ←→ ε
α1···αk ψi1α1 · · ·ψikαk (19.29)

This matching can be extended to versions of these operators containing derivatives too.

19.4 An Example of Enhanced Symmetry

Back in Exercise IV.2, we discussed the duality

U(1)2 +WF boson ←→ U(1)−3/2 + fermion. (14.11 again)

This had a global symmetry of O(2), including complex conjugation.
However, the dualities we have discussed in this section tell us that there are more things we

can add to this duality! In fact, one can easily see that

SU(2)1 +WF boson and SU(2)−1/2 + fermion (19.30)

are also dual to the above theories. This is especially interesting because these theories actually
have a larger symmetry group [49, 38]! Let’s see why that is, using an argument which is actually
relatively well-known in the case of the Standard Model. (Look up “custodial symmetry”.)

Consider an object φα which carries a fundamental SU(2) index α , where the SU(2) is a gauge
field. Now there is a peculiarity of the fundamental representation of SU(2), due to the fact it is
pseudoreal. This is a fancy way of saying that the generators ta obey ta† =−V−1taV for some V .
For our case, V = σ2. Therefore, both

φ =

(
φ1

φ2

)
and Φ̂ = iσ2Φ =

(
φ ?

2

−φ ?
1

)
(19.31)

transform in the same way under left-multiplication by an SU(2) matrix. This is easy to check, so
feel free to do so!

Now one can construct

Φ =

(
φ1 φ ?

2

φ2 −φ ?
1

)
(19.32)

which transforms under left-multiplication by SU(2), and then the potential is expressed in terms of
objects like trΦ†Φ = |φ |2.
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But something more is true: we can now consider right-multiplication by an entirely inde-
pendent SU(2)R matrix! Taking account of the fact that the −1 ∈ SU(2)R is actually a gauge
transformation, we obtain a SU(2)/Z2 ∼= SO(3) global symmetry.27

We conclude that we suspect all four of these theories flow to an IR fixed point exhibiting SO(3)
symmetry, although only the non-Abelian field theories make this symmetry obvious:

U(1)2 +φ

U(1)−3/2 +ψ

O(2
) symmetry

SU(2)1 +φ

SU(2)−1/2 +ψ

SO(3) symmetry

m
SO(3) CFT

Figure 16: Four theories flowing to the same SO(3)-symmetric critical point, with only two of them
possessing this symmetry in the UV

19.5 Some Technicalities

Firstly, we have not been careful about including potential almost-trivial factors in our dualities.
It turns out that it is quite simple to fix this; focussing on our favourite duality (19.2), we can simply
add a factor to the U(N) side of the duality as follows:

U(N)k +N f WF scalars+U(Nk)−1 ←→ SU(k)−N+N f /2 +N f fermions.

This new factor, an almost trivial spin-TQFT, does not couple to the matter in any way. It also
encodes a gravitational Chern-Simons term 2kNCSg.

Secondly, we can be a little more specific about the global symmetry which acts on this theory
[38]. We have focussed on U(N f ), which is not wrong, but it does miss two issues which we should
emphasize here. For one thing, there is also a charge conjugation symmetry, which is an additional
Z2 factor, commonly written as ZC

2 . This combines with U(N f ) to give U(N f )oZC
2 rather than

U(N f )×ZC
2 , since charge conjugation also maps U(N f ) representations to their conjugates too.

Also, the fact that we only look at gauge singlets means that we don’t actually get all representa-
tions of U(N f ) cropping up. For instance, on the fermion side, operators must have a fermion number
which is a multiple of k in order to form an SU(k) singlet. Therefore, there is a Zk ⊂U(1)⊂U(N f )

factor which does not act on any physical states, and hence U(N f ) does not act faithfully. A similar
argument applies to the monopole operators on the left-hand side. In total, therefore, the manifest
faithful global symmetry of these theories is given by

G =
U(N f )

Zk
oZC

2 . (19.33)

It is of course possible that the CFT which emerges at low energies has even more symmetry, with
global symmetry GIR ⊃ G, or even that there is more manifest extra symmetry we didn’t notice.

27Another, arguably more straightforward way to derive this result is to expand φ into four real degrees of freedom,
and find that o(4)∼= su(2)⊕ su(2) contains two su(2) factors, only one of which was gauged.
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We won’t worry about this for now (although in Section 20.3, we discuss an extra global SU(2)
symmetry present in SU(2) gauge theories).

Note that when the gauge group is SU(2), the analysis is complicated by the fact that we can
write more invariants [50, 38] and thereby construct various different potentials preserving different
global symmetries. We also won’t worry about this in great detail.

We will, however, note that the proposal for the way that the Higgs mechanism works did make
some implicit assumptions about the nature of the potential. Firstly, we assumed that the only terms
we needed to worry about were the quadratic deformation we added, and a quartic term. Note that
sextic terms like |φ |6 are classically marginal in the UV theory, for example, so you might worry
about such terms. We will however make the natural assumption that the quartic terms (which are
classically relevant in the UV theory) dominate. But even then, in terms of the gauge-invariant
object Mi

j = φ
†i
α φ α

j , there are two flavour-symmetric operators at quartic order trM2 and (trM)2. Of
course, generically these will have different dimensions and we expect one of them to dominate the
physics a low energies. Now if the potential is assumed to be purely the former operator before we
deform it, so

V = λ trM2 +µ trM = λ tr
[
Mi

j +
µ

2λ
δ

i
j

]2
+ const.. (19.34)

then for µ � 0, the Higgs mechanism indeed forces φ to condense as proposed in Section 19.2.
We assume that the operator (trM)2 is simply irrelevant at this fixed point, and plays no role in the
physics.

For some motivation, one can look to the limit of large N,k (with N/k fixed), where there is a
natural distinction between single-trace operators like trM2 and multi-trace operators like (trM)2.
In particular, single-trace operators generally have lower dimensions at large N, since multi-trace
operators receive extra anomalous dimensions from every extra trace beyond the first. In fact, the
large N limit predicts (trM)2 to be irrelevant, which is a good sign!

20. QCD in Three Dimensions

The way we have discussed these dualities so far makes them seem like something of a curiosity;
most of them are “strong-strong” dualities, relating two theories we do not really understand to each
other. There are exceptions, of course, like the k = 1 case of (19.2) which states that

U(N)1 +N f WF scalars ←→ N f free fermions (20.1)

which expresses the more intriguing fact that an apparently strongly coupled theory is in fact free in
the IR.

But there are other ways to use proposed dualities to make more conjectures about the behaviour
of interesting theories. In this section, we will discuss the proposal of Komargodski and Seiberg for
the structure of QCD in three dimensions [51].

Concretely, let’s consider the theory

SU(N)k +N f fundamental fermions (20.2)

for general values of k,N,N f . Importantly, k+ 1
2 N f ∈ Z since we have not explicitly written the

level as k−N f /2. A classical analysis suggests the only relevant operators are the various quadratic
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operators ψ̄ iψ j. These are the operators we will play with. In fact, we will chiefly work with the
flavour symmetric mass m, so

L = iψ̄ /Daψ−mψ̄ψ +
k+N f /2

4π

[
ada− 2i

3
a3
]

. (20.3)

Here, we see that it is indeed necessary that k+N f /2 ∈ Z for gauge invariance. We might as well
take k ≥ 0, since time reversal simply takes k→−k and switches the sign of the mass term. The
massless theory with k = 0 has time-reversal symmetry.

As usual, we can tell that there must be some kind of transition as we vary m, since

SU(N)k +N f ψ →

{
SU(N)k+N f /2 if m� 0

SU(N)k−N f /2 if m� 0
(20.4)

leads to two distinct gapped phases (both TQFTs, except for when k =±N f /2 and we obtain the
trivial confining theory SU(N)0 on one side). The details of what happens for intermediate values of
m are unclear, however. Notice that there is in fact another scale in the theory, namely the gauge
coupling g2. In principle, when |m| ∼ g2, the dynamics could be very different to when |m| � g2.

We will stick with the proposal of Section 19 for N f ≤ 2k:

U(k+N f /2)−N +N f φ

SU(N)k +N f ψ

m

SU(N)k+N f /2 (gapped)
↔U(k+N f /2)−N

SU(N)k−N f /2 (gapped)
↔U(k−N f /2)−N

gapless CFT

Figure 17: The behaviour of QCD for N f ≤ 2k (identical to Figure 13, though we have switched N
and k relative to the previous section)

Our perspective now is that this theory is gapped except at one point, at which there is a second-order
transition. That gapless point has a dual description as a theory of N f gauged scalars. Notice that
the U(N f ) symmetry is unbroken everywhere in the diagram.

This cannot be exactly what happens for N f > 2k, since we have k−N f /2< 0, and U(k−N f /2)
does not exist! Let’s take a moment to ask exactly what happens to the bosonic theory

U(k+N f /2)−N +N f φ (20.5)

in this situation.

20.1 The Grassmannian in the Bosonic Theory

The fate of
U(M)+N f φ with M < N f (20.6)
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is that the VEV looks something like

〈φ〉= φ0 :=


v 0 0
0 v 0
0 0 v
0 0 0
0 0 0


︸ ︷︷ ︸

M


N f (20.7)

which actually spontaneously breaks the U(N f ) global symmetry. In fact, any U(N f ) rotation of
〈φ〉 would do equally well. Taking |m| → ∞, we conclude that the low-energy physics consists of a
map into the space of all such VEVs, since they all minimize the potential. Let’s parametrize this by
writing φ(x) = g(x)φ0 where g ∈U(N f ). Clearly, there is a subgroup U(M)×U(N f −M)⊂U(N f )

which acts trivially on φ0. Therefore, the low-energy physics of (20.6) is a sigma model with target
space

Gr(M,N f ) =
U(N f )

U(M)×U(N f −M)
, (20.8)

a space referred to as a Grassmannian. From the above, it can be thought of as the set of all
M-dimensional linear subspaces of an N f dimensional vector space.

In our case, the theory (20.5) in the Higgs phase is described by a sigma model into

M (N f ,k) =
U(N f )

U(N f /2+ k)×U(N f /2− k)
. (20.9)

So far we have not given the Chern-Simons level N in (20.5) any role to play in this theory, which
seems wrong. Indeed, it turns out that there is a topological term which can be added to our
M (N f ,k) sigma model.

At a mechanical level, it is simple enough to get some sense of why this topological term should
arise. Notice that the bosonic kinetic terms become

|(dgφ0− iφ0a)|2 (20.10)

and so the a equation of motion, neglecting the kinetic terms for the gauge field by setting g2 = ∞,
is something like

N
2π

da = i(φ †
0 dgφ0− iv2a− c.c.) (20.11)

which relates the gauge field to the gradient of the dynamical sigma model field. Therefore, the
Chern-Simons term −NLCS[a] must reduce to some non-trivial function of g. Actually evaluating
this term is a little harder; in Appendix XI, however, we will see that Chern-Simons terms can be
expressed entirely in terms of da by embedding our 3d spacetime in a 4d one. It follows that is a
natural 4d expression for the topological term, which we refer to as a Wess-Zumino-Witten term. We
will not discuss its details any further than this, leaving that to the literature [51, 52]. We will simply
refer to this interesting theory as

M (N f ,k)N (20.12)

in what follows, denoting the presence of the topological term with coefficient N.
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The analysis above was essentially semi-classical; since we can take the mass-squared to
be arbitrarily negative in this bosonic theory, we can understand the coset theory fairly well. At
intermediate values of the mass, the size of the target space M (N f ,k)N which is essentially v2 can
be small. Then quantum effects are important in getting a handle on the physics. But there are some
properties of the Higgs phase which are fairly robust. The most important thing is that the broken
global symmetry guarantees the presence of gapless modes in the spectrum: the Nambu-Goldstone
bosons.

20.2 The Grassmannian in the Fermionic Theory

Now it is entirely possible that this has nothing to do with the dynamics of SU(N)k +N f ψ , but
intriguingly there are hints that it does – for at least some values of N f > N. We claim that as m is
lowered from infinity down to values of order g2, there is a useful description in terms of

U (k+N f /2)−N +N f φ (20.13)

and that in particular, both theories flow to the same CFT for a special tuned value of m. Below, we
will argue that we expect this to hold to N < N f < N?(N,k) for some unknown N?.

From the above, this requires that if we deform by lowering the fermion mass m further, we
actually enter a phase described by the sigma model M (N f ,k)N . Let us take this at face value. Since
we are assuming that there is still a duality between the relevant operators of both theories, which
we take to be the quadratic operators |φi|2 and |ψi|2, it is natural to suggest the condensation of the
scalar corresponds to the condensation of the quark bilinear, with for instance

ψ̄
i
ψ j = diag(x,x, . . . ,x︸ ︷︷ ︸

N f /2+k

,y,y, . . . ,y︸ ︷︷ ︸
N f /2−k

) for x 6= y. (20.14)

Obviously this has the same phenomenology as the bosonic theory: symmetry breaking and accom-
panying gapless bosonic excitations.

In fact, this is an old proposal when N f is even and k = 0, and sometimes goes by the name of
“chiral symmetry breaking” [53, 54, 55]. This language comes from four dimensional conventions,
where we can think of an even numbers of flavours of fermion as N f /2 = N4 four-component Dirac
fermions χI . The full symmetry group of N4 massless 4-component fermions is U(2N4), since each
Dirac fermion has an internal “chiral” symmetry. There is then the possibility of generating χ̄ IχI

mass terms for these Dirac fermions, which would represent the onset of symmetry breaking of
these chiral rotations.28

In the late ’80s, an expansion in large N f for the case k = 0 [56, 57] was used to argue that for
N f < N?, for some threshold N? ≈ 128(N2−1)/3π2N ≈ 4.3N, precisely such a breaking pattern
does occur. In Section 20.3 we will see how this implies it should also happen for certain other
values of (k,N f ).

28We emphasize that at k = 0, the theory has time-reversal invariance, and these 4-component mass terms preserve a
Z2 which combines time-reversal invariance with a flavour rotation, which can be seen by writing them in terms of two
2-component mass terms χ̄χ = ψ̄1ψ1− ψ̄2ψ2 and noting that time-reversal combined with ψ1↔ ψ2 is a symmetry of
this term. In four dimensions, this is the Z2 which we would take to define time reversal acting on a theory with a Dirac
spinor.
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One way to think about this new phase is in terms of confinement. Intuitively, by confinement,
we refer to the idea that we never see particles carrying gauge charge physically separated – there is
a growing potential if we break a singlet state up into its component pieces and move them apart.29

As we discussed in Chapter V, the pure Chern-Simons phases SU(N)keff are to be thought of as
non-confining – inserting heavy quarks has relatively little energy cost beyond the mass of the quark
itself. However, in our new phase, it is suspected [51] that we can think of the condensate as a
diagnostic of very strong attractive interactions with the gluons that lead to confinement.

But unlike with the bosonic theory, larger and larger mass deformations do not simply lead
to this sigma model becoming more and more weakly coupled. For m�−g2, the low-energy
dynamics has to be SU(N)k−N f /2. The idea is that the sigma model is never parametrically large as
we vary m, so that it is a “purely quantum” phase [51]. It follows that we have to include another
phase transition between M (N f ,k)N and the phase SU(N)k−N f /2 which reigns supreme at m� 0.
Remarkably, there is another theory which captures such a phase transition:

EXERCISE VI.2 The Other Bosonic Dual

Show that there is a new bosonic theory with precisely these two phases, namely

U(N f /2− k)N +N f φ̃ . (20.15)

This leads to a rather intriguing proposal for the QCD phase diagram:

U(k+N f /2)−N +N f φU(N f /2− k)N +N f φ

SU(N)k +N f ψ

m

SU(N)k+N f /2

↔U(k+N f /2)−N

SU(N)k−N f /2

↔U(N f /2− k)N

M (N f ,k)N

Figure 18: The behaviour of QCD for some values of N f > 2k (N f < N?), displaying an intermediate
range of symmetry breaking, and two proposed dual descriptions valid only near the marked points

It is important to appreciate that the dual bosonic descriptions are each only useful in some
region of this phase diagram. As we dial m away from the right-hand marked point into the
Grassmannian phase, the fermionic RG flow eventually leads us to phases which cannot be reached
as deformations of the right-hand bosonic theory.

For sufficiently large N f , however, our conjecture must fail. This is because of what is known
about the large flavour limit of CFTs. The approach of [56, 57] shows that when N f is very large, no
flavour symmetry breaking mass terms can be dynamically generated in the IR, and so the theory is

29In some circumstances, like fermions with a Spin(N) gauge group where we can test whether the one-form Z2
global symmetry is broken, there are rigorous order parameters which test for confinement, but that is not the case for this
theory. It is famously difficult to define confinement rigorously.
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conformal at one point, and gapped away from that point. We do not know a simple scalar dual for
the CFT.

20.3 Flows Between QCD Theories

We can of course play the by now very familiar game of integrating out individual flavours of
fermion to flow to new dualities. You are asked to check this as an exercise:

EXERCISE VI.3 Bounds from Flows

Argue that if the Grassmannian phase M (N f ,k)N occurs at (N,N f ,k), then

(N,N f −1,k±1/2) has a phase M (N f −1,k±1/2)N . (20.16)

Let N?(N,k) be such that the Grassmann phase occurs precisely for 2k < N f < N?. We can
think of N? as a differentiable function of k if we just smoothly link its value between adjacent
values of k. Show that we must be able to take∣∣∣∣∂N?

∂k

∣∣∣∣≤ 2 (20.17)

and deduce that if there is any SU(N) theory with a Grassmannian phase, then there must be
a SU(N)0 theory with such a phase.

In total, therefore, we predict that the various N f and k should look something like Figure 19.
We emphasize that we have not really proven that N?(N,k)> 0 for any N,k. This means we cannot
guarantee the region with a Grassmannian phase exists, but it is striking that there is a nice, consistent
picture based around this idea.

k

N f N f = 2kN f = 2|k|

N?

has broken phase

unique CFT

unique CFT,
scalar dual

unique CFT,
scalar dual

Figure 19: This diagram shows the postulated behaviour of SU(N)k QCD with N f fermions as we
vary (k,N f ) for fixed N > 1. We assume N? > 0 so that theories with the interesting intermediate
phase exist
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SKYRMIONS

There is plenty more to say about these theories. One interesting point is that the effec-
tive sigma model M (N f ,k)N supports solitonic configurations. These go by the name of
Skyrmions. The presence of the Wess-Zumino-Witten term is crucial for understanding the
nature of these excitations, since they are bosonic for even N and fermionic for odd N.

This is interesting – the Skyrmions are gauge-invariant solitons whose statistics are given
by (−1)N . This might remind you of the baryons of the fermionic field theory. One can indeed
show that the Skyrmion excitations are dual to the baryons of the fermionic field theory, by
noting that they are the monopole operators of the bosonic field theory, then arguing that these
flow to the Skyrmion excitations of the sigma model. (The mesons, of course, are precisely
what have condensed to give the fermion bilinear.)

21. The Master Duality

Although very general, it turns out that Aharony’s are part of a still broader class of proposed
dualities. One of the most obvious things one might wish is to include both fermions and bosons on
the same side of the duality. Late in 2017, Jensen [58] and Benini [50] both proposed that there is
indeed a very similar class of dualities of this kind. (This was partially anticipated back in [59].)
They claim that

SU(N)k−N f /2 +Ns scalars+N f fermions←→U(k)−N+Ns/2 +N f scalars+Ns fermions

for fundamental Wilson-Fisher scalars and fermions subject to

Ns ≤ N and N f ≤ k and (Ns,N f ) 6= (N,k). (21.1)

We call this the “master duality” [58], since it makes for an exciting name, and also because we can
derive not only all the previous dualities but many more by taking this as a seed.

Note that there is a global symmetry U(N f )×U(Ns) which acts separately on the two different
types of matter. We will discuss the background terms needed to make this duality work in a
moment.

This new duality also comes with an operator map, of course. Let us begin by listing the
operators which preserve the global symmetry and which might be needed to understand how we
tune the theory.

n At quadratic order, the SU(N) theory has two mass terms preserving the global symmetry:

|φ |2 and ψ̄ψ (21.2)

We expect to have to tune these away at the critical point, but that they correspond to
relevant deformations of the IR theory. (For each of i = 1, . . . ,Ns and a = 1, . . . ,N f , the
other mass terms |φi|2 and |ψa|2 are also important relevant deformations, of course, but
they will break the global symmetry.)

n At quartic order, we again have multiple possibilities for how we contract our various
indices, as discussed in Section 19.5. Suppressing gauge indices, there are four operators

φ
†i

φ j φ
† j

φi , φ
†i

φi φ
† j

φ j , φ
†i

φi ψ̄
a
ψa , φ

†i
ψa ψ̄

a
φi

89



P
o
S
(
M
o
d
a
v
e
 
2
0
1
8
)
0
0
1

Dualities in 2+1 Dimensions

which we expect to need to think about near our IR fixed point. The fermionic ones

ψ
†a

ψa ψ̄
b
ψb , ψ

†a
ψb ψ̄

b
ψa

are classically irrelevant, so we ignore them. Of the purely bosonic operators, we expect
that the story of Section 19.5 goes through again so that only the first, single-trace operator
survives. Of the remaining (classically marginal) terms which mix bosons and fermions,
the first is multi-trace but the second is single-trace. Dropping the multi-trace operators,
then, we see that we anticipate seeing only

φ
†i

φ j φ
† j

φi and φ
†i

ψa ψ̄
a
φi (21.3)

in the IR. We will take both to be present in the potential at low energies. In particular, we
will take the mixed term

Lmix =−λmix(φ
†i

ψa)(ψ̄
a
φi) (21.4)

to appear with a negative coefficient λmix < 0 in the IR potential.
n Finally, at sextic order, the only operators which are not irrelevant in the UV are the

classically marginal operators
∼ |φ |6

with various index contractions. Since we do not tune away the quartic operators, we
expect that we need not worry about these, or indeed higher-order operators.

This means that we expect the only relevant deformations at the IR fixed point to ultimately
be the mass deformations. A very similar story goes through on the U(N) side, and the mapping
between the IR-relevant mass operators across the duality is straightforward to guess from what we
have seen before. Section 21.1 contains the details of how this works.

Before we start analyzing the phases of the system, the last thing we want to do is describe how
the background flavour terms work out. Here are the schematic Lagrangians of the system:

L = |Da+A+Dφ |2 + iψ̄ /Da−A+C−|φ |4−|φ |2|ψ|2 + kL SU(N)
CS [a]+

1
2π

cd(B− trSU(N) a) (21.5)

and

L̃ =|Db−A+Cφ |2 + iψ̄ /Db+A+D−|φ |4 + |φ |2|ψ|2

− (N−Ns)L
SU(k)

CS [b]+
1

2π

(
trSU(k) b

)
d(B+NsA)+NskLCS[A]+ kL SU(Ns)

CS [D] (21.6)

where a,b,c are dynamical U(N), U(k) and U(1) fields. We also have A,B as background U(1)
fields, and C,D as background SU(N f ) and SU(Ns) fields. It’s quite a mouthful!

21.1 Phase Diagram of the Flavour-Symmetric Theory

Let’s start by thinking about what happens as we vary the flavour symmetric mass terms, which
are given by

δL =−µ1|ψ|2−µ2|φ |2 ←→ δL̃ =−µ1|Φ|2 +µ2|Ψ|2. (21.7)
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The analysis is somewhat different according to whether or not Ns < N or Ns = N. We will do the
analysis for the first case, and mostly leave the second as an exercise.

We should emphasize that we do not have much control near the proposed CFT. For example,
there is no quantum number that prevents |φ |2 and |ψ|2 from mixing with each other. This means
that we certainly cannot assert with great confidence what happens for small perturbations µ1,µ2. It
is still sensible to perform a classical analysis which we expect to be valid for large |µi|; we will
follow [50] in marking the portion of the phase diagram which we feel less confident about.

The Phases of SU(N)k−N f /2 +Nsφ +N f ψ

Let us begin by giving a large positive mass µ1� 0 for the scalars of the left-hand theory. This
means simply decoupling them, leaving us with

SU(N)k−N f /2 +N f ψ (21.8)

whose time reversal we have already studied in Section 19. We already understand this theory, so let
us move on.

For µ2� 0, we expect the scalars to condense, and take on a VEV

〈φ〉=

v 0 0 0 0
0 v 0 0 0
0 0 v 0 0


︸ ︷︷ ︸

N

Ns (21.9)

that reduces us to a gauge group SU(N−Ns)k−N f /2. Now it is important that we work with Ns < N.
However, something interesting now happens to the N f fermions which transformed in the

fundamental of SU(N). Firstly, they split up into NsN f “singlet fermions” χIa – which do not
transform under the surviving gauge group – and N f fermions ηa which are in the fundamental of
the gauge group. Secondly, the presence of Lmix = −λmix(φ

†iψa)(ψ̄
aφi) in the Lagrangian now

generates a negative mass for the singlet fermions,

Lmix ≈ λmixvχ̄χ . (21.10)

Recall that λmix < 0, so this represents a positive mass.
This doesn’t affect things much when µ2� 0; we obtain a TQFT SU(N−Ns)k−N f . However, as

we decrease µ2 from 0→−∞, we expect that at some point (heuristically µ2 = λmixv) the fermions
χ become massless. Since these fermions are not charged under a dynamical gauge group, this
transition does not affect the IR TQFT, which is always SU(N−Ns)k.

This means the phase diagram is predicted to take the form of Figure 20. In summary, the
TQFTs in the labelled regions are as follows.

I SU(N)k

II SU(N)k−N f

IIIa, IIIb SU(N−Ns)k−N f

IV SU(N−Ns)k
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µ1

µ2

III

IVIIIb
IIIa

Figure 20: Cartoon of the phase structure of SU(N)k−N f /2+Ns φ +N f ψ with mass terms−µ1|ψ|2−
µ2|φ |2, for N < Ns. The marked region represents where we are less certain of the details

The critical theories we propose describe the transitions between these phases are given by the
following theories:

I-II SU(N)k−N f /2 +N f ψ

II-IIIa SU(N)k−N f +Ns φ

IIIa-IIIb SU(N−Ns)k−N f +N f Ns singlet χ

IIIb-IV SU(N−Ns)k−N f /2 +N f η

IV-I SU(N)k +Ns φ

EXERCISE VI.4 Too Many Scalars

We have not yet handled the case of Ns = N. Argue that here, there are at most 4 distinct
regions, one of which is not a TQFT. Similarly, show that there are at most four transitions,
and explain what they are.

What do you think happens for Ns > N?

The Phases of U(k)−N+Ns/2 +N f Φ+Ns Ψ

There is a very similar story here, with the phase diagram taking the form of Figure 21.

It should not be too hard to convince yourself we have the following phases for N < Ns:

I’ U(k)−N
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µ1

µ2

I’II’

IV’IIIb’
IIIa’

Figure 21: Cartoon of the phase structure of U(k)Ns/2−N +N f Φ+Ns Ψ with mass terms −µ1|Φ|2 +
µ2|Ψ|2 for N < Ns. The marked region represents where we are less certain of the details

II’ U(k−N f )−N

IIIa’, IIIb’ U(k−N f )Ns−N

IV’ U(k)Ns−N

The critical theories are as follows:

I’-II’ U(k)−N +N f Φ

II’-IIIa’ U(k−N f )Ns/2−N +Ns Ψ

IIIa’-IIIb’ U(k−N f )Ns−N +N f Ns singlet χ̃

IIIb’-IV’ U(k)Ns−N +N f Φ

IV’-I’ U(k)Ns/2−N +Ns Ψ

By Aharony’s dualities, these match across the duality!

EXERCISE VI.5 Bits and Bobs

(a) Check that the Aharony dualities are reproduced with the correct background terms.
(b) Explain the flavour bound by considering first the case N < Ns and k > N f , and then

N = Ns and k ≥ N f .
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21.2 Technicalities Again

The master duality (21.1) can again be dressed with an almost trivial spin TQFT as follows:

SU(N)k−N f /2 +Ns φ +N f ψ ←→U(k)−N+Ns/2 +N f Φ+Ns Ψ+U(k(N−Ns))1 (21.11)

Additionally, the global symmetries can be dressed with charge conjugation and quotiented by
ZN to give the faithful group

G =
U(N f )×U(Ns)

ZN
oZC

2 . (21.12)

We have not taken care with exceptional symmetries, like that of SU(2) gauge theory.

22. Aside: Further Generalizations

The dualities we have seen here turn out to still be only the tip of the iceberg. There are more
dualities which can be deduced from the master duality (some rigorously, some subject to additional
assumptions). There are some which are independent. In this section, we will briefly outline the
road towards three kinds of generalizations:

n In Section 22.1, we will briefly discuss versions of the master duality appropriate for
orthogonal and symplectic groups. By and large, the story is very similar.

n Then, in Section 22.2 on page 97, we will turn to the question of what happens when there
is matter in other representations.

n Finally, in Section 22.3 on page 102, we will look at what happens when we consider
matter transforming under product gauge groups.

22.1 Other Gauge Groups

We have so far worked entirely with unitary and special unitary groups, based essentially around
a level-rank duality of TQFTs that looks like

SU(N)k ←→ U(k)−N . (22.1)

However, there are other level-rank dualities out there.

22.1.1 Orthogonal Groups

Firstly, let’s look at SO(N) gauge theories. Consider a gauge field A ∈ so(N), and work in the
vector representation. Then there is a Chern-Simons term which can be added to the action,

kLCS[A] =
k

8π
tr
[

AdA− 2i
3

A3
]

for k ∈ Z, (22.2)

whose gauge invariance follows from essentially the same argument given in Appendix XI.
It turns out that essentially the same correspondence exists as for unitary gauge fields [49]:

SO(N)k ←→ SO(k)−N (22.3)
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This suggests, for example, that SO(N)1 is trivial, since SO(1) certainly is. 30

It is believed that these can be dressed with matter in much the same way as the unitary ones
can be. We propose

SO(N)k +N f real Wilson-Fisher scalars φ ←→ SO(k)−N+N f /2 +N f real fermions ψ (22.5)

is another family of valid IR dualities, for some (k,N,N f ). All the matter fields are in the vector
representation of the gauge group.31 The half-integer quantization of the fermionic theory’s Chern-
Simons term reflects a very similar story to the unitary case; a Majorana fermion ψ must be
regularized in a gauge-invariant way (loosely speaking, with a negative half-integer Chern-Simons
term), which introduces a time-reversal anomaly equal to a unit Chern-Simons term.

The basic global symmetry of each theory is O(N f ). As usual, there are various subtleties to get
right here [61]. Firstly, because the gauge group is SO(N), there is an ungauged Z2 ⊂ O(N) which
acts as a global symmetry on the matter. Call this Z2 symmetry C. (If we have i = 1, . . . ,N f as a
flavour index and a= 1, . . . ,N as a colour index, this transformation can be taken to be C : φi1→−φi1

and C : φia→ φia for a > 1.) Note that one can gauge this Z2 factor to generate an O(N) gauge
theory.

Secondly, there is a monopole symmetry associated to SO(N) gauge theories. Recalling our
earlier discussions, monopoles are associated with the fundamental group π1(SO(N)). For N = 2,
we have π1(SO(2)) = π1(U(1)) = Z since we can have arbitrary winding around the circle. This
is nothing new – there is a monopole symmetry U(1) associated to a U(1) gauge group. However,
for N > 2, this is no longer the case, and instead, π1(SO(N)) = Z2. This means that in SO(N) for
N ≥ 3, we do not have operators with arbitrary monopole charge, but only ±1. This gives rise to a
global monopole symmetry Z2.

The global symmetry is therefore O(N f )×Z2×Z2. We will not address questions of how
much of this acts faithfully.

The flavour bound restricting the range of validity of these orthogonal dualities is thought to be
a little stranger than the simple N f ≤ N bound of the unitary case. Instead,

N f ≤


N−2 k = 1

N−1 k = 2

N k ≥ 3

(22.6)

As before, these bounds emerge naturally from considering the RG flow in the presence of mass
deformations.

30This indeed is true, up to similar caveats to those discussed for unitary groups: SO(N)1 is a trivial spin-TQFT, with
two transparent lines of spin {0, 1

2} and a framing anomaly of c = N
2 [60]. (In particular, SO(1)1 can actually be taken to

be the spin Ising CFT.) A more precise version of the level-rank duality is

SO(N)k×SO(0)1 ←→ SO(k)−N ×SO(kN)1 (22.4)

Here, SO(0)1 is defined by the simple presence of two transparent lines, but the absence of any framing anomaly. It serves
simply to make the left-hand side a spin TQFT. SO(kN)1 gives the right-hand side a framing anomaly and makes it also a
spin TQFT.

31The left-hand theory should strictly be supplemented with SO(0)1 and the right-hand theory with SO(k(N−N f ))1.
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One can flow from (N,k,N f ) to either (N,k,N f − 1) or (N− 1,k,N f − 1) by adding a mass
term for a single flavour. The phenomenology is the same; the scalar may Higgs the gauge group,
and the fermion can shift the Chern-Simons term. If we can integrate out N f > N fermions, the
non-trivial TQFT which remains in the fermionic theory cannot be dual to the trivial gapped theory
which we find on the bosonic side. This is certainly never possible.

Meanwhile, if N f = N and k = 2, then we can flow down to the theory for (0,2,0), where we
find SO(0)2↔ SO(2)0 ≡U(1). This is impossible: the right-hand theory contains a gapless photon.
Therefore, this theory is excluded too. Finally, if N f = N−1 and k = 1, then we can reach (2,1,1)
which would require a duality

SO(2)1 +Wilson-Fisher scalar ?!←→ Majorana fermion. (22.7)

This is surely also wrong! The left-hand theory is equivalent to U(1)1 + complex WF scalar which
we know should actually be dual to a Dirac fermion, not a Majorana fermion. Indeed, the global
symmetries do not seem to work out.

Otherwise, we ultimately reach consistent level-rank duals and we do not find matter dualities
we know to be inconsistent. We hypothesize that the other dualities do in fact hold. There is plenty
to say about these dualities, but we will leave this alone for now, save for a couple of exercises
inspired by [49] which you might like to try out.

EXERCISE VI.6 Two Orthogonal Exercises

(a) Consider the case N = k = 2 and N f = 1. Show that this described the same
U(1)2 + φ ↔ U(1)−3/2 +ψ fixed point discussed at length in Section 19.4. By
considering the global symmetries, argue that the duality is realized in a different
way by the orthogonal duality to the U(1) duality. Finally, show that this is consistent
with the enhanced IR symmetry of these theories.

(b) Derive a duality

SU(N)1 +N f complex scalars ←→ SO(N)2 +N f real scalars (22.8)

and state what range of N f this should hold for. What goes wrong for N f = N?

22.1.2 Symplectic Groups

There is also a story to be told for the symplectic groups defined by

USp(2N) = SU(2N)∩Sp(2N,C). (22.9)

The fundamental level-rank pair here is

USp(2N)k ←→ USp(2k)−N (22.10)

which is again very similar. Since symplectic groups are likely less familiar, it is worth mentioning
there are some accidental isomorphisms for small ranks:

USp(2)k ∼= SU(2)k and USp(4)/Z2 ∼= SO(5). (22.11)
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A further useful fact is that these groups are simply connected, and hence do not support monopole
operators.

Now we can also add matter to these level-rank duals. We will add matter in the fundamental 2N
representation of USp(2N). This is another example of a pseudoreal (or quaternionic) representation,
which will be useful in a moment. For now, let us state the duality:32

USp(2N)k +N f scalars with φ
4

φ ←→ USp(2k)−N+N f /2 +N f fermions ψ (22.14)

This we claim has the more familiar bound of N f ≥ N.
Now using pseudoreality, one can actually write the 2N complex components of each 2N

representation as 4N complex scalars subject to a sort of reality condition. Taking a = 1, . . . ,2N and
i = 1, . . . ,2N f , we can impose

ϕaiΩ
ab

Ω̃
i j = ϕ

†
b j (22.15)

where Ω,Ω̃ are invariant symplectic tensors of USp(2N) and USp(2N f ) respectively. Taking account
of the fact that the center Z2 =USp(2N)∩USp(2N f ) of both groups is gauged, this makes clear
that there is in fact a USp(2N f )/Z2 global symmetry in this theory. There is no monopole symmetry
of course, and charge conjugation is swallowed up in the global symmetry by the pseudoreality
condition. Note that there are potentials which do not respect the full global symmetry, so in general
we need to observe the full USp(2N f ).

Notice that N = k = N f = 1 reproduces the dualities of Section 19.4 yet again. One can also
derive various other interesting results using the USp(2)∼= SU(2) isomorphism, such as

USp(2k)−1/2 +ψ ←→ U(k)−3/2 + ψ̃ (22.16)

which implies an emergent SU(2) symmetry in the right-hand theory; and similarly for N f ≤ N we
have

USp(2N)1 +N f φ ←→ U(N)2 +N f φ̃ (22.17)

which implies the U(N f )oZ2 symmetry of the right-hand side is enhanced to USp(2N f ).
Another more intriguing possibility arises from considering a possibly SO(5) symmetric theory,

but we will not discuss this here.

22.2 Other Representations and Adjoint QCD

Through what we have discussed, we have almost always been looking at matter transforming
in the fundamental representation of whatever group we had. (The exceptions are the U(1) fields of
charge greater than 1.) But there is plenty to say about theories with matter in other representations.

The most interesting example which has been studied in the literature is the case of adjoint
QCD [62]:

SU(N)k + adjoint Majorana fermion λ . (22.18)

32The missing trivial TQFTs can be added to give the pure level-rank duality

USp(2N)k×SO(0)1 ←→ USp(2k)−N ×SO(4kN)1 (22.12)

or
USp(2N)k×SO(0)1 +N f φ ←→ USp(2k)−N ×SO(4k(N−N f ))1 +N f ψ . (22.13)
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Notice that because the adjoint representation of SU(N) is real, we have a choice as to whether we
couple a real or complex matter field to the gauge field. We will consider the case of a real fermion.

22.2.1 Fermions in General Representations

We need to know how fermions in the adjoint representation shift the Chern-Simons level.
We might as well quote the general result for a representation R of a group G, generalizing the
discussion of Section 12.2 [63, 49]. The fermion determinant is

det′D =

|detD |exp
(
− iπη

2

)
R is a complex representation

|detD |exp
(
− iπη

4

)
R is a real representation

(22.19)

where the APS index theorem now tells us that

πη =
∫

2xRLCS +2dimRCSgrav (mod 2π) (22.20)

and we need to explain what the Dynkin index xR is. The concisest definition is given by computing
the trace trR[tA

R tB
R ] = 2xRδ AB where tA

R are the generators of the gauge group in the representation
R. They are normalized so that tr[tAtB] = δ AB in the representation used to compute LCS =
1

4π
tr[AdA− 2i

3 A3]. There is a relation between this and the quadratic Casimir C2(R), given by

xR =
dimR ·C2(R)

2dimG
. (22.21)

For a few examples with the conventional normalizations in each case:

SU(N) : xcharge q =
q
2

(22.22a)

SU(N) : xfundamental =
1
2

xadjoint = N (22.22b)

SO(N) : xvector = 1 xadjoint = N−2 (22.22c)

USp(2N) : xfundamental =
1
2

xadjoint = N +1 (22.22d)

(The index xadjoint ≡ h is known as the dual Coxeter number of G.)
Integrating out a single fermion of mass m therefore shifts the Chern-Simons level by sign(m)xR

for complex representations or sign(m)
2 xR for real representations.

22.2.2 Adjoint QCD

Returning to adjoint QCD, we have a real fermion in the adjoint of SU(N), and hence integrating
it out therefore shifts

SU(N)k +λ →

SU(N)k+N
2

SU(N)k−N
2

(22.23)

which means that k must be an integer for even N and a half-integer for odd N. We will take k ≥ 0
without loss of generality.

This also tells us what the limiting TQFTs are for large values of the fermion mass. But, as in
Section 20, the middle of the phase diagram is in principle more complicated. What happens as we
vary the mass? Let’s follow the analysis of [62].
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The first point of interest is that the matter content of adjoint QCD is precisely the content
of N = 1 pure supersymmetric gauge theory, with the fermion λ being the gaugino in the vector
multiplet. This means that there is at least one special point in the phase diagram: the supersymmetric
point!

Neglecting auxiliary fields, the supersymmetric Chern-Simons Lagrangian is

kL N =1
CS =

k
4π

tr
(

ada− 2i
3
+ χ̄χ

)
LV =

1
g2 tr

(
−1

4
f 2 + iχ̄ /Dχ

)
(22.24)

so writing χ = gλ , we conclude that the supersymmetric fermion mass sits at m = mSUSY ∼−kg2.
Let’s define

m = mSUSY +µ (22.25)

to put the SUSY point at µ = 0.

Notice that for large k, the mass of the dynamical fields are very large. We can therefore trust a
semi-classical analysis: we integrate out the fermion with a large negative mass m�−g2, leaving
the theory SU(N)k−N/2. In fact, it is believed that the theory behaves in exactly this way for all
k ≥ N/2 [64], with supersymmetry being unbroken at low energies. We propose that the phase
diagram looks like Figure 22.

SU(N)k +λ

µ

SU(N)k+N/2SU(N)k−N/2 CFTSUSY point

Figure 22: The proposed phase diagram of adjoint QCD for k ≥ N/2, the range for which SUSY is
does not spontaneously break. There is no phase transition at the SUSY point; it is simply a gapped
theory whose massive excitations are organized into SUSY multiplets. Assuming the other transition
is second-order, there is a CFT at some value of µ ∼ kg2

Let us now consider k < N/2. In this range, it is believe that at low energies, SUSY is broken
[64]. At the supersymmetric point, this means there must be a massless Majorana fermion mode
which transforms under the broken symmetry. We call this the Goldstino. The minimal proposal
encapsulating this possibility is illustrated in Figure 23. However, we suggest this happens only at
one value of k, specifically k = N/2−1.
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SU(N)N/2−1 +λ

U(N−1)−N/2−1/2,−N + real adjoint λ̃

µ

SU(N)N−1SU(N)−1 CFTmassless
Goldstino

Figure 23: The proposed phase diagram of adjoint QCD for k = N/2− 1. There is a massless
Goldstino for spontaneously broken SUSY at µ = 0. Again, assuming the other transition is
second-order, there is a CFT at some value of µ ∼ kg2. We also give a proposed dual of this theory

Assuming that there is a CFT sitting at the transition point at µ ∼ kg2, there is a plausible dual of
this point:

CFT transition ←→ U(N−1)−N/2−1/2,−N + real adjoint λ̃ . (22.26)

We will come back to this in a moment.

Why should this not hold for all k? Well, let us look at theories with even N so that k = 0 is
permitted. This theory is time-reversal invariant, and at the special point µ = m = 0, we have both
time-reversal symmetry (which is preserved in the IR, because of a result known as the Vafa-Witten
theorem which states that “in parity-conserving vectorlike theories such as QCD, parity conservation
is not spontaneously broken” [53]) and supersymmetry (which should be spontaneously broken
[64]).

Now suppose there was only a single transition in this theory. Then by symmetry, the transition
sits at the special point µ = m = 0. It mediates between SU(N)−N/2 and SU(N)+N/2. Since these
are distinct except for the case N = 2 (and then we are in the k = N/2−1 case from above again),
there would have to be a complicated interacting field theory sitting at the transition. No such theory
is known.

Instead, it is suggested that the picture of Figure 24 could be correct: we have two transitions,
and an intermediate quantum phase, much like that of normal QCD discussed in Section 20. This
time, it is not gapless (except at the supersymmetric point where a Goldstino briefly rears its head).
Instead, it is described by a new gapped TQFT. It turns out that there are natural theories which
could describe the transitions between that intermediate phase and the two asymptotic phases. These
are shown in the picture as duals flowing to the two (tentative) CFTs at those transitions.
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SU(N)k +λ

U(N
2 + k)−3N/4+k/2,−N + adjoint λ̃U(N

2 − k)3N/4+k/2,N + adjoint λ̂

µ

SU(N)k+N/2SU(N)k−N/2 CFT2CFT1

massless
Goldstino

U(N/2+ k)−N/2+k,−N

↔U(N/2− k)N/2+k,N

Figure 24: The proposed phase diagram of adjoint QCD for k < N/2− 1. There is a massless
Goldstino for spontaneously broken SUSY at µ = 0. There are assumed to be two second-order
transitions either side of this, each with a distinct dual theory. The phase between these is described
by a new gapped TQFT (apart from at the SUSY point)

This actually makes for a fairly easy-to-understand phase diagram: just understanding the semi-
classical physics of the two dual theories matches the TQFTs and so forth perfectly. All of the
symmetries work out straightforwardly because of level-rank duality.

The key parts of this claim are that there are two different fixed points we can tune to by looking
at larger or smaller µ , and that they can also be reached by tuning one of two different dual theories:

SU(N)k + adjoint λ
larger µ←→ U

(
N
2
+ k
)
−3N/4+k/2,−N

+ adjoint λ̃+ (22.27)

SU(N)k + adjoint λ
smaller µ←→ U

(
N
2
− k
)

3N/4+k/2,N
+ adjoint λ̃− (22.28)

Note that the U(1) factors on the right decouple completely from their respective theories. Hence
the interacting part of each dual theory is given by

SU(N±)∓k±+adjoint fermion λ± where N± = N/2±k and k± = N±/2+(N/2∓k). (22.29)

Hence, assuming k < N/2− 1, k± ≥ N±/2. This means that each dual theory lies in the regime
of Figure 22, near the single CFT point. (Of course, one should also include the decoupled U(1)
sector.) The duality is however not valid far from that point. We do not generally expect the other
points of interest to be accessible in under RG flow from this point.

Note that at k = 0, the diagram must have time reversal symmetry. To see this, one needs the
non-trivial result that actually

U(N/2)−N/2,−N ←→ U(N/2)N/2,N (22.30)

is time-reversal invariant [26].
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EXERCISE VI.7 The SU(2)0 Case

Argue that no phase transition is needed in the case of SU(2)0 plus an adjoint real fermion
(although there is still a massless Goldstino at m = µ = 0). This suggests that the interacting
theory flows in the IR to a free theory.

SU(2)0 + adjoint λ → U(1)2 TQFT + neutral Majorana fermion λ̃ (22.31)

22.3 Quiver Theories

Finally, just as in Section 16.3, it is possible to construct quiver theories with product gauge
groups. However, armed with the technology of the master duality of Section 21, we can derive
some more interesting quivers! We shall follow the approach of [65, 66].

22.3.1 Two Node Quivers

The basic technique we will use is the familiar approach of gauging global symmetries. Let’s
start with a simple example, using only Aharony’s duality

U(N)k +N f φ ←→ SU(k)−N+N f /2 +N f ψ (22.32)

and remembering that there is an explicit level k Chern-Simons term for the U(N f ) global symmetry
on the right-hand side. Suppose that we add k2 to the Chern-Simons term for this group on both
sides before gauging it. Then if we call (N1,k1) = (N,k) and (N2,k2) = (N f ,k2), we find that we
gain a theory

U(N1)k1×U(N2)k2 + bifund. φ ←→ SU(k1)−N1+N2/2×U(N2)k2+k1/2 + bifund. ψ (22.33)

where as usual the scalars have |φ |4 interactions. There is now only one species of matter on both
sides, but it transforms in the fundamental of both gauge groups (i.e. the bifundamental). We stress
that this only holds for N2 ≤ N1. We will also assume all variables are positive.

As a quiver diagram, we can draw this as Figure 25. We think of this duality as dualizing
the first node of the quiver. Starting from the left-hand theory, we see that the effect is essentially
level-rank duality at that node; combined with a change of the statistics of its charged matter; and
finally a shift of the Chern-Simons level at the connected nodes.

We could also now dualize the second node of the quiver using a similar approach. This results
in a third dual theory,

U(N1)k1×U(N2)k2 + bifund. φ ←→ SU(k1)−N1+N2/2×U(N2)k2+k1/2 + bifund. ψ

←→ SU(k1)−N1+N2×SU(k1 + k2)−N2 + bifund. φ̃ (22.34)

provided that not only N2 ≤ N1 but also k1 ≤ N2.
Note that if we also impose N1 = N2 = N, then the first theory can be dualized at the second

node instead. In this case, we obtain the top and left-hand edges of Figure 26. The other edges can
be obtained by further dualizations of course, one requiring that k1 ≤ N and the other that k2 ≤ N.
However, since we can follow the dualities around the loop either way, it must be that both dualities
actually hold when either k1 ≤ N or k2 ≤ N.
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U(N1)

k1

U(N2)

k2

SU(k1)

−N1 +
N2
2

U(N2)

k2 +
k1
2

SU(k1)

−N1 +N2

SU(k1 + k2)

−N2

Figure 25: The dual quivers of (22.33) and (22.34). We adopt the convention that a straight line
denotes a Wilson-Fisher boson, whilst a dashed line refers to a fermion. We think of the relationships
as dualizing the first node (requiring N2 ≤ N1) and then the second node (requiring k1 ≤ N2) of the
quiver

U(N)

k1

U(N)

k2

SU(k1)

−N
2

U(N)

k2 +
k1
2

SU(k1)

0

SU(k1 + k2)

−N

U(N)

k1 +
k2
2

SU(k2)

−N
2

Figure 26: This illustrates the special case of Figure 25 when N1 = N2 = N. The top and left-hand
dualities hold for all (k1,k2,N) but the right-hand duality requires k1 ≤ N and the left-hand duality
requires k2 ≤ N

As a further note, if we assume that the theory of SU(k1)0 confines so that all matter fields form
singlets, there is a natural further ansatz for the IR behaviour of the bottom-right theory in Figure 26.
Writing φaα where a = 1, . . . ,k1 and α = 1, . . . ,k1 + k2, then it is plausible that the only light matter
field is the simplest singlet operator, T β

α = φaα φ̄ aβ . This is certainly only an educated guess, but it
makes for an interesting conclusion:

SU(k1)0×SU(k1 + k2)−N + bifund. φ → SU(k1 + k2)−N + adjoint φ̃ . (22.35)

22.3.2 Many Nodes

Even just with Aharony’s dualities, we can do more:
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EXERCISE VI.8 Many Node Dualities from Aharony

(a) Firstly, establish the duality

U(N1)

k1

U(N2)

k2

U(N3)

k3

U(N1)

k1 +
k2
2

SU(k2)

−N2 +
N1+N3

2

U(N3)

k3 +
k2
2

by dualizing the central node. You can assume N2 ≥ N1 + N3. Explain what
assumption must be made about the symmetry breaking patterns when the scalars
get a mass.

(b) Secondly, establish this duality, valid for 2N2 ≤ N1:

U(N1)

k1

U(N2)

k2

U(N1)

k1

U(N2)

k2

SU(k1)

−N1 +N2

U(N2)

k2 + k1

SU(k1)

−N1 +N2

U(N2)

k2 + k1

However, the master duality of Section 21 gives us the power to do even more elaborate things,
because we can dualize theories with both scalars and fermions, and with more flavours of matter in
total. In particular, we can start with a linear bosonic quiver, then dualize the nodes one at a time
from left to right. Since every edge is attached to two nodes, it effectively gets dualized twice, and
we end up with a new linear bosonic quiver; you are asked to work through this as an exercise. A
similar trick works for fermions.

EXERCISE VI.9 Quivers from Master Dualities

Starting from a quiver

SU(N1)−k1×SU(N2)−k2×SU(N3)−k3×SU(N4)−k4 (22.36)
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with purely bosonic matter, and applying Aharony’s duality on the first node, derive a theory
whose gauge group is

U(k1)N1−N2/2×SU(N2)−k2−k1/2×SU(N3)−k3×SU(N4)−k4 . (22.37)

Without worrying about the details of the way the interactions must be tuned, now apply the
master duality to the second node to obtain the gauge group

U(k1)N1−N2×U(k1 + k2)N2−N3/2×SU(N3)−k3−k1/2−k2/2×SU(N4)−k4 (22.38)

and to the third to get

U(k1)N1−N2×U(k1 + k2)N2−N3×U(k1 + k2 + k3)N3−N4/2×SU(N4)−k4+k1/2+k2/2+k3/2.
(22.39)

Finally, apply Aharony’s dualities one last time to derive a purely bosonic theory

U(k1)N1−N2×U(k1 + k2)N2−N3×U(k1 + k2 + k3)N3−N4×U(k1 + k2 + k3 + k4)N4 . (22.40)

You should find this is valid for

ki ≥ 0 and N1 ≥ N2 ≥ N3 ≥ N4. (22.41)

How do the global symmetries match?
State how the duality of the first and last theories generalizes to higher numbers of nodes.

Now set N1 = N2 = · · ·= Nn = N and ki = 1 for all i = 1, . . . ,n, and write down the resulting
duality. You should find a theory with many massless Goldstone bosons under various mass
deformations. Identify a term which could be added to the potential to break the symmetry
protecting these modes. What is the dual of this term, and how does the elimination of the
massless modes work work in the dual theory? Finally, you should find some confining nodes.
Come up with a simple guess for the low-energy description of the theory.

These results have interesting applications to SU(N) QCD in 3+1 dimensions [66], since this
theory is believed to support domain walls on which theories like SU(N)k live [67]. In particular,
one sees that there is the possibility of an interesting phase transition between k separate theories
[SU(N)1]

k living on widely separated domain walls, and a single theory SU(N)k when the walls
coincide. This can be described by an [SU(N)1]

k theory with bifundamental matter, and dualized
using the above results.
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Part VII

Supersymmetry Breaking
We briefly review how supersymmetric dualities are related to the non-supersymmetric cases studied
above.

23. Mirror Symmetry

Supersymmetric dualities have a rather better pedigree than non-supersymmetric ones – many
such dualities have been subjected to an impressive array of analytic tests, including exact computa-
tions of partition functions, operator dimensions, and more. We are interested in mirror symmetry,
a term which refers to a huge collection of dualities in different dimensions that in some sense
generalize the supersymmetric version of T-duality. They can generally be derived from string
theoretic constructions, giving us some reason to believe them even before starting on the amassed
evidence that supports them.

The idea of this section is to take one of these well-known supersymmetric dualities in 2+1 di-
mensions and find a way to deform them, breaking supersymmetry, to obtain our non-supersymmetric
bosonization duality [68]. Our derivation shows that, with fairly mild assumptions, the SUSY duali-
ties imply the non-SUSY ones.

23.1 N = 2 Supersymmetry in 2+1 Dimensions

In 2+1 dimensions, N = 2 supersymmetry implies the theory has 2 Majorana supercharges,
for a total of 4 real supercharges. Relative to the more familiar 3+1 dimensional world, this means
that it is like N = 1 supersymmetry in 3+1 dimensions; in fact, one can dimensionally reduce
(N ,d) = (1,4)→ (N ,d) = (2,3).

The (N ,d) = (1,4) chiral multiplet reduces to

N = 2 chiral multiplet: complex scalar φ , Dirac fermion ψ (23.1)

whilst the vector multiplet reduces to

N = 2 vector multiplet: vector field aµ , Dirac fermion λ , real scalar σ . (23.2)

The vector multiplet also contains an auxiliary (non-propagating) real scalar D.
The chiral multiplet comes with a conserved U(1) charge given by phase rotations, which can

be gauged using a U(1) vector multiplet. The whole theory also comes with a U(1)R symmetry
which associated to the relative phase between the fermions and the scalars. The U(1) vector
multiplet also comes with a monopole symmetry as usual.

As well as the usual kinetic terms, the supersymmetric theory supports Chern-Simons and more
generally BF terms between vector muliplets. The trick of coupling background fields to symmetries
generalizes to SUSY theories too – except now there is a whole background superfield which we
can couple to U(1)J .
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23.2 The Simplest N = 2 Mirror Pair

The theory we will study is the simplest N = 2 mirror pair [69], which can be itself be obtained
by partially breaking supersymmetry in the simplest N = 4 theory [43]. It is given by

free chiral multiplet ←→ U(1) vector multiplet + chiral multiplet (23.3)

which looks remarkably like both the Abelian bosonization dualities and the particle-vortex dualities
we discussed. We will see that it both of these emerge naturally when we break the SUSY of this
N = 2 pair. This is an IR duality: far below the scale of the gauge interactions in the right-hand
theory, the dynamics is that of the free, left-hand theory.

Let us define the free theory of the chiral multiplet (φ ,ψ). This theory enjoys both a U(1)J

symmetry and a U(1)R symmetry, with charges

U(1)J U(1)R

φ 1 1
ψ 1 0

for the matter fields. We can couple the U(1)R symmetry to a background field AR, and the U(1)J

symmetry to a background vector multiplet with vector field AJ , real scalar σJ and auxiliary scalar
DJ . Defining

m2
φ = σ

2
J +DJ and mψ = σJ , (23.4)

we find
Lfree = |DAJ+ARφ |2−m2

φ |φ |2 + iψ̄ /DAJ ψ−mψ ψ̄ψ . (23.5)

The dual, gauged theory has a chiral multiplet (φ̃ , ψ̃) and also a vector multiplet (aµ ,λ ,σ ,D).
(Here, λ is the gaugino.) The charged objects in this theory are as follows:

U(1)J U(1)R U(1)a

φ̃ 0 0 −1
ψ̃ 0 −1 −1
σ 0 0 0
λ 0 −1 0
eiρ 1 0 0

where ρ is the dual photon to a.
These are described by the following Lagrangian:

Lgauge =
1
g2

(
−1

4
fµν f µν +

1
2
(∂σ)2 + iλ̄ /D−ARλ +

1
2

D2
)

+ |D−aφ̃ |2 + i ¯̃ψ /D−a−ARψ̃− (σ2−D)|φ̃ |2 +σ ¯̃ψψ̃ + ūλ̄ ψ̃ + ū ¯̃ψλ

+
1

4π

(
ada+2Dσ + λ̄λ

)
− 1

2π
(adAJ +DJσ +σJD)+

1
2π

adAR +
1

4π
ARdAR (23.6)

This is an interacting theory, but the claim is that at low energies, the dynamics is that of the free
theory Lfree.

(Note that our conventions differ from [68] since we use an implicit Pauli-Villars regulator. We
are using a supersymmetric version of the regulator we used previously.)
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24. Breaking Supersymmetry

So how do we see non-supersymmetric dualities emerging from this setup? We have already
given the game away with our notation: we will simply use the various scalars in the background
vector fields to give a large mass to the fields in our theory, allowing us to identify the low-energy
TQFTs and infer what the gauge transitions are as we vary these masses [68].

One thing that is missing is the |φ |4 interactions; without these, even the free scalar theory is
unstable under negative mass deformations. A neat trick is to add

LD =
1

2h2 (DJ− D̃J)
2 (24.1)

to both Lagrangians and then integrate over DJ . This generates a scalar potential

V (φ) = (σ2
J + D̃J)|φ |2 +

h2

2
|φ |4 (24.2)

in the free theory, for instance.
We now take

m2
φ = σ

2
J + D̃J and mψ = σJ . (24.3)

With this done, we find the phase diagram looks like Figure 27.

−σJ|σJ|

D̃J

fr
ee

fe
rm

io
n

fr
ee

fe
rm

io
nWilso

n-Fisher Wilson-Fisher

I
m2

φ
> 0, mψ < 0

II
m2

φ
> 0, mψ > 0

III
m2

φ
< 0, mψ > 0

IV
m2

φ
< 0, mψ < 0

Figure 27: The phase diagram of the free theory

Along particular lines in this diagram, either the scalar field or the fermion become massless.
These are to be thought of as critical theories governing various phase transitions arising as we vary
D̃J,σJ .
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EXERCISE VII.1 Annotating the Phases

In the phases I-IV, what does the low-energy physics look like? What background terms are
there? Write down a description of each critical theory including the background terms.

The dual theory is a little more interesting. There are various extra dynamical fields here, and
they all interact with each other non-trivially.

EXERCISE VII.2 The Interacting Theory

For various regimes of D̃J,σJ , compute the coefficients in the various scalar potentials
including m2

φ̃
, and deduce some approximations to the vacuum expectation values of the

scalars. Notice that when φ̃ condenses, there are terms in the action which cause the chiral
fermion ψ̃ and the gaugino λ to mix. Diagonalize this mass matrix, identifying the fermion
masses m+ > m−. Otherwise, compute the masses mλ and mψ̃ .

You should find the structure of Figure 28. Check that the phases I-IV match.

−σJ|σJ|

D̃J

sc
al

ar
Q

E
D

fr
ee

fe
rm

io
nscalar QED

fermionic QED

I
m2

φ̃
> 0, mψ̃ > 0, mλ < 0

II
m2

φ̃
< 0, m+ > 0, m− < 0

III
m2

φ̃
> 0, mψ̃ < 0, mλ > 0

IV
m2

φ̃
> 0, mψ̃ < 0, mλ < 0

Figure 28: The phase diagram of the gauge theory

We can therefore deduce that four transitions should be described by identical CFTs. They are
as follows:
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EXERCISE VII.3 The Dualities

Show that this implies the following dualities, and identify them:

iψ̄ /DAJ ψ ←→ |D−aφ̃ |2−|φ̃ |4 + 1
4π

ada− 1
2π

AJda (24.4a)

|DAJ+ARφ |2−|φ |4 ←→ |D−aφ̃ |2−|φ̃ |4− 1
2π

(AJ +AR)da (24.4b)

iψ̄ /DAJ ψ− 1
2π

bd(AJ +AR) ←→ iλ̄ /D−ARλ − 1
2π

ad(AJ +AR) (24.4c)

|DAJ+ARφ |2−|φ |4− 1
4π

AJdAJ ←→ i ¯̃ψ /D−a−ARψ̃ +
1

4π
ada+

1
2π

adAJ (24.4d)

There is an analogous story in 2 dimensions [70], which is the dimensional reduction of the
story we have told here.
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Part VIII

More Evidence
We very briefly outline how various discretizations and large N limits of dualities can be fruitful
sources of evidence in support of them.

25. Lattice Physics and the Wire Construction

Historically, many dualities were understood in terms of dualizations of lattice theories. This
is the case here too; for example, it is possibly to explicitly rewrite the lattice partition function
of a complex scalar to look like that of a gauged complex scalar. This is central to the history of
particle-vortex duality [12, 13].

Of course, this does not prove anything about the continuum limit of those lattice theories. We
retreat to non-rigorous arguments about what we expect to see emerging in the continuum limit,
supported by numerical evidence arising from taking larger and larger lattices. As we emphasized
on page 63), numerical evidence from the lattice is not always a reliable guide!

Analyzing these questions in detail is beyond our scope. We will briefly discuss some discretized
constructions and reserve further judgement.

25.1 Some Typical Lattice Constructions

Let us briefly outline how a typical lattice argument might look. We will look at Peskin’s
original argument [12] for particle-vortex duality.

We begin with the usual lattice presentation of the XY model, which consists of compact
variables θn ∈ [0,2π) at every lattice site n ∈ Z3, together with a free energy

F =− 1
T ∑

n
∑
µ

cos(θn+µ −θn) (25.1)

where n+µ runs over all neighbours of the lattice site n. If this is unfamiliar, the general idea is
that the mean-field approximation of φ = exp(iθ) gives rise to a complex scalar. Tuning T is then
thought of a proxy for tuning the usual |φ |2 mass term: clearly as T → ∞, the theory should become
disordered, whilst as T → 0, we expect the free energy to prefer configurations where θ is a constant
in space, and hence φ acquires a vacuum expectation value.

Now one can rewrite the partition function as

Z = exp(−F) =
∫

dθ ∏
n,µ

exp
(

1
T

cos(θn+µ −θn)

)
(25.2)

∝

∫
dθ ∏

n,µ
∑
mn,µ

exp
(
− 1

2T
(θn+µ −θn−2πmn,µ)

2
)

(25.3)

∝

∫
dθdbn,µ ∏

n,µ
∑
mn,µ

exp
(
−T

2
b2

n,µ + ibn,µ(θn+µ −θn−2πmn,µ)

)
(25.4)

where mn,µ are some auxiliary integers and bn,µ are new continuous variables. Together, m,θ now
exhibit a gauge redundancy, and by fixing the gauge we may take θn ∈ (−∞,∞) instead, provided
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we fix, say, 0 = ∑µ mn+µ,µ −mn,µ . We must introduce a new periodic field θ̃n to impose this integer
constraint.

Now the integral over θn is a Lagrange multiplier imposing that 0 = ∑µ bn−µ,µ −mn,µ . This is
analogous to ∇ ·b = 0 and has pure curl solutions bnµ = ∑ν ,σ εµνσ (an−σ ,σ −an−ν−σ ,σ ); here, a has
a gauge symmetry.

Altogether, we end up with a presentation in terms of the gauge field a and the new compact
variable θ̃ . This is believed to correspond to the dual U(1)+φ theory with appropriate tuning.

25.2 The Wire Construction

One particularly nice discretization argument for 3d dualities relies on using 2d dualities –
intuitively, much of the hard work has already been done, so we should take advantage of it! The
idea is to construct a 3 dimensional system by taking many long, parallel wires. By coupling these
wires together in a cunning way, the claim is that one can build three-dimensional dualities [71].

The idea is simply to define a Hamiltonian which is a sum of decoupled 2d field theories,
then add a hopping term allowing particles to move between the wires. (This is in the spirit of our
earlier discussions of quiver theories.) Suppose we start with fermions. Then we can bosonize
the description on each wire, obtaining a sequence of coupled bosons. There is now a simple
prescription to construct some dual bosonic fields. These turn out to still have local hopping terms,
but what used to be the normal kinetic terms become highly non-local. This can be remedied by
introducing an appropriate new variable into the path integral to induce those long-range interactions:
it will be no surprise that this take the form of a gauge field. Some simple formal manipulations
reveal that there is an entirely local expression for the path integral of this new theory of a gauged
boson: hence 3d bosonization indeed seems to follow fairly naturally from 2d bosonization, at least
in an appropriate discretization.

Of course, we still have to take the continuum limit, and the dramatic lack of isotropy might be
a cause for concern. As promised, we will content ourselves with the knowledge that at least the
discrete version of bosonization does make sense.

26. Large N Physics

Changing direction somewhat, we should emphasize that one of the many hints which led
Aharony to his set of dualities was that their large N limit was relatively well-established. The large
N limit is a common crutch we use in situations where we apparently lack any small parameter in
which to expand, an obvious problem in our study of 3d gauge theory.

Happily, one can compute many things in the large N limit (at least to leading order) relatively
simply. We will not do any of the detailed calculations (and see [46] for extensive references), but
we will outline one of the main observations about the simplest non-Abelian dualities,

SU(N)k +1 scalar ←→ U(k)−N+1/2 +1 fermion

In particular, we will ask about the minimal dimension of a baryon on the left-hand-side. In the
large N limit, it suffices to work classically, in a nearly-free approximation. This means multiplying
together fundamental fields φa and their spatial derivatives ∂µ1 · · ·∂µnφ , seeking the lightest operator
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we can write down containing N scalar field insertions φ contracted with εa1···aN . Derivatives
increase the dimension of an operator, and so to find the lightest operator we need to minimize the
number of derivatives. However, we should remember that the classical equation of motion ∂ 2φ = 0
effectively eliminates certain operators. This counting problem can be solved directly; there are
2 j+1 operators with j derivatives. Hence we can build j2 objects with fewer than j derivatives
each, and using a total of ∑

j−1
i=0 i(2i+1)∼ 2 j3/3 derivatives. Taking N ∼ j2 then gives a dimension

∆∼ 2N3/2/3.
Now consider the right-hand side of the duality. Baryons are not gauge invariant here, but

we can build gauge-invariant operators from monopoles. Monopoles are normally labelled by
their magnetic (or GNO) charges under the U(1)k maximal torus of the U(k) group. The simplest
monopole has charges (1,0, . . . ,0). The Chern-Simons term means this is not gauge-invariant; even
from the U(1) part we can see it has charge N. In terms of Young diagrams, as we discussed in
Chapter V, it transforms as a single row of N boxes under SU(N). More intuitively, it is given
electric charge entirely under a single U(1)⊂U(1)k. Now to render this neutral, we must dress it
with N fermionic excitations, and moreover they must all come with the same gauge group index
(since they carry charge under only one of the k possible U(1)s). Hence we must come up with an
non-vanishing operator by multiplying together a single fermionic field N times. But just as with
the bosonic problem, this requires using derivatives to prevent the operator vanishing (albeit now
due to the fermionic statistics rather than the explicit antisymmetrization). Hence the counting is
also the same, giving ∆∼ 2N3/2/3.

In this way, the naivest possible matchings one could imagine powering these dualities are
straightforwardly realized at leading order in the large N limit. (In both calculations, the subleading
terms are harder to calculate, of course, but in principle this can be checked order by order.) There
are plenty more checks one can carry out, and they all go through well for Aharony’s dualities.
(Some have also been carried out for the master duality.)
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Part IX

A Duality in Condensed Matter
In condensed matter, dualities crop up because we are interested in many different effective descrip-
tions low-energy physics of strongly interacting systems. In this section, we see how one of the
dualities that we derived earlier on crops up in Quantum Hall physics.

27. Quantum Hall Physics

We are going to turn to one of the most famous physical effects to be uncovered last century –
the quantum Hall effect (QHE). This may seem a bit of a sudden change of direction, but it illustrates
how helpful it is to think in the language of dualities when attacking practical experimentally-
motivated questions.

This is part of an enormous story which we certainly will not have time to discuss in detail. See
[24] for an accessible introduction to many of the key ideas of the QHE.

The central idea is as follows: we study the physics of electrons confined to a plane, subject
to a large magnetic field. The physics of this system is quite different from the sort of systems
traditionally studied in high-energy physics. Firstly, it is non-relativistic: we are working in regimes
far below the energy that would be required for electron particle-anti-particle creation to be relevant.
Secondly, the presence of the background magnetic field drastically changes the spectrum, separating
it out into Landau levels.

Classically, one predicts that the electron drift velocity v in an electric field should satisfy a
force balance equation

F =−e(E+v×B)− m
τ

v = 0 (27.1)

where τ models the average scattering time of the system (the usual origin of resistance in this
model, which you might know as the Drude model). The current is proportional to v, of course; it is
given by

J =−nev (27.2)

where n is the density of the conducting particles. Rewriting the above equation in terms of J and
the the cyclotron frequency ωB = eB/m, we find(

1 ωBτ

−ωBτ 1

)
J =

e2nτ

m
E (27.3)

which one would conventionally write as Ohm’s law, J = σE, where σ is the conductivity of the
system. One can also define the resistivity of the system, using

ρ = σ
−1 =

(
ρxx ρxy

−ρxy ρxx

)
=

m
ne2τ

(
1 ωBτ

−ωBτ 1

)
(27.4)

where we have both the conventional longitudinal resistivity ρxx and the novel Hall resistivity ρxy

with
ρxx =

m
ne2τ

and ρxy =
B
ne

. (27.5)
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This is indeed observed at low B. However, as we increase B such that the number of filled
Landau levels

ν =
n

eB/2π h̄
(27.6)

becomes small (on the order of ν . 10) we start to get deviations due to quantum effects. (We have
counted the 2 spin polarizations of a physical electron as filling 2 levels. Practically, this means
working with films on the scale of nanometres and magnetic fields on the order of a few Tesla.)

In particular, the Integer Quantum Hall Effect (IQHE) refers to plateaus developed around
filling fractions ν ∈ Z where

ρxx = 0 and ρxy =
2π h̄
e2

1
ν

. (27.7)

over a wide range of magnetic fields. (This quantization is exact to 1 in a hundred million.) We also
have the Fractional Quantum Hall Effect (FQHE), where a similar phenomenon is observed at

ν =
1
3
,
2
3
,
2
5
, . . . (27.8)

for various ν ∈Q.
Each one of these plateau refers to a distinct phase of matter! They are naturally parametrized

by the levels of Chern-Simons terms in effective field theories that govern them. Notice that e.g. the
effective field theory

S =
e2

h̄

∫ k
4π

AdA (27.9)

has the property that the current is

Ji =
δS
δAi

=− ke2

2π h̄
εi jE j (27.10)

corresponding to

ρxy =
2π h̄
e2

1
k

(27.11)

which is precisely the right resistivity to describe the ν = k filling state. Hence this is a natural guess
for the effective theory of the IQHE, where k ∈ Z.

Similarly – and now setting e2 = h̄ = 1 again – we find that

S =
∫
− k

4π
ada+

1
2π

adA (27.12)

gives the correct description of the “Laughlin states” which have filling fraction ν = 1/k. To see
this quickly, ignoring subtleties on non-trivial manifolds, one solves ka = A for a to find an effective
Lagrangian L ∼ 1/k

4π
AdA. The Laughlin states only exist for odd k for fermions, and even k for

bosons.
In general, there are many theories with the same filling fraction, however; some are equivalent

and some are distinct. Their physical differences are obtained by investigating other things like their
spectrum of excitations. This can be analyzed by adding matter fields to the Chern-Simons theory,
giving rise to an anyonic spectrum for general Chern-Simons theories. (Typically these matter fields
are non-relativistic.)
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28. Half-Filling and Composite Fermions

However, there is something very interesting that happens as ν → 1
2 . In this regime, we no

longer observe plateaus, and at first sight it seems like we simply recover the classical physics,

ρxx = const. and ρxy =
B
ne

. (28.1)

Yet on closer inspection, things look wildly different from the classical physics of electrons in a
strong magnetic field. One can do an experiment that reveals that the excitations of the system
behave exactly as if there was no magnetic field whatsoever! The electrical excitations are in a
metallic phase, complete with a Fermi surface; they are not organized into Landau levels at all.

It is clear from this that these fundamental excitations are not electrons; at least, not as we
know them. There are various approaches one can take to understanding this sort of state, but we
will follow one of the cleanest approaches, known as the parton or slave particle construction.
Specifically, we follow the presentation of [25].

The idea is to make a minimal modification of our naive electron-based understanding of the
system. We propose that the physical electron Ψ can be represented as

Ψ = ψφ (28.2)

where there fermionic field ψ is some sort of dressed electron, whilst the bosonic φ somehow
encodes the dressing. We will take the fermion ψ to have the same charge as the electron Ψ under
the physical electromagnetic field A, whilst φ is neutral.

Now there is some inherent redundancy in the relative phase of ψ and φ . Let us account for
this by gauging this U(1) redundancy, giving ψ charge 1 and φ charge −1. This leads to a proposal
for an effective field theory description of the state:

Lparton = iψ̄ /DA+aψ + |D−aφ |2 + · · · (28.3)

where we didn’t write any interactions, but we imagine they may be important! Note that this action
is trivially equivalent to

Lparton = iψ̄ /Daψ + |DA−aφ |2 + · · · (28.4)

since we can shift a→ a−A.
We now further assume that it is productive to think of ψ as the dynamical field in the

theory, whilst φ can be treated by some sort of mean-field approach. That means solving for their
lowest-energy state, and integrating them out by expanding around that state. Of course, without
understanding the details of the dynamics, it is hard to know what this state is.33 But let us make
some observations.

Firstly, notice that gauge invariance implies the number of φ and ψ excitations are both equal
to the number of Ψ excitations, which we expect to be fixed to the number of physical electrons in
the system. Therefore, we don’t expect the φ state to be φ = 0. (One possibility is that φ condenses

33In the course so far, we have been confident that we are expanding around the φ = 0 or φ = const states. But if, for
example, the true state depended upon the gauge field a−A, we might find a different effective description. This will be
the case for us.
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so as to Higgs a. This seems possible, but boring: it leaves only ψ as a fermion in the background
field A, and we haven’t really gained anything from our parton construction.)

Secondly, φ is coupled to a electromagnetic field A−a, and there is a strong magnetic field dA
in the system. It is plausible that the physics of this magnetic field might dominate the behaviour of
φ . Then φ could enter a bosonic quantum Hall state! Since we are interested in the ν = 1/2 state of
the original theory, and the number of φ excitations is the same as the number of Ψ excitations, it is
only natural to speculate that φ might form the standard Laughlin ν = 1/2 state described above!
(This is a valid state for bosonic particles.) We generally expect this to be a low energy state, so it is
reasonable to imagine that we might expand around such a vacuum.

Doing so, we obtain a proposed description

Lparton Laughlin = iψ̄ /Daψ +
1

2π
(a−A)db− 2

4π
bdb+ · · · . (28.5)

Since our effective field theory was constructed by assuming that φ is at half-filling, and
the number of φs is such that they half-fill the original set of Landau levels, the magnetic field
φ experiences should be exactly of size A. Hence a should not really carry any magnetic field.
Therefore, we will expect this to describe a number of fermions which do not experience a magnetic
field – it has been soaked up by the φ variables. This is something else which gets called "flux
attachment". In the condensed matter literature, one commonly refers to ψ as a composite fermion,
and says that we have "attached two units of flux" to the electron Ψ to form ψ .

This is the fundamental picture which reveals the way that the emergent particle ψ can effec-
tively feel no background field: the electromagnetic field is experiences is screened by the filled
Landau level of φ excitations. Instead, it forms a Fermi surface, with all the usual physics that goes
along with that.

29. The Application of Fermionic Particle-Vortex Duality

We might have proceeded rather differently, of course. Suppose we wanted to write down a
description in terms of the electrons directly. We might have done this by considering a theory like

L = iΨ̄ /DAΨ (29.1)

for example. This directly described a state at half-filling in terms of an electron field Ψ.

EXERCISE IX.1 Landau Levels for Dirac Fermions

Prove that the Dirac equation
i(/∂ − i/A)ψ = Eψ (29.2)

in a background with (dA)12 = B has solutions

E2 = (2n+1)B±B (29.3)

with n = 0,1,2, . . . indexing the Landau levels. The last term here is Zeeman splitting of the
two spin degrees of freedom.
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How can both of these descriptions possibly be related? Well, in a course on 2+1d dualities,
there is one obvious possibility...

Recall our first fermionic particle-vortex duality,

iψ̄ /Daψ +
1

2π
bda− 2

4π
bdb+

1
2π

bdC ←→ i ¯̃ψ /DCψ̃ +
1

4π
CdC (15.2 again)

and observe that the left-hand side precisely describes the partonic theory we just wrote down with
C =−A! Now letting Ψ be the time-reversal, charge-conjugated version of ψ̃ , we conclude

Lparton Laughlin ←→ iΨ̄ /DAΨ+ · · · . (29.4)

so that the theory is dual to an ungauged Dirac fermion, plus any interactions terms we have missed.
We learn that our proposed descriptions of the ν = 1

2 state of fermions is equivalent to an
electron directly coupled to the electromagnetic field strength! Of course, one has to add interactions
in principle to understand the details of what is going on, but the idea is that it may be possible to
treat those interactions perturbatively in the partonic picture. If we had reason to believe this was the
case (and it can be motivated from mean-field reasoning), then we would indeed predict that there is
a useful description in terms of an emergent fermionic field ψ which experiences no magnetic field
at half-filling!

(This picture makes clear the so-called particle-hole symmetry of the lowest Landau-level, in
which one simply switches which states are occupied and which are empty. It is natural that a ν = 1

2
state of fermions should have this symmetry. This symmetry is the hidden symmetry which we
observed back in equation (15.2).)

This is a rather beautiful story, and it opens the door to various nice ways of understanding the
full spectrum of quantum Hall states in terms of ψ instead of the original Ψ. We will not explore
this any further, but will simply note that thinking in terms of dualities gives a rather more solid
foundation upon which to build the ideas of mean-field theory and parton constructions which come
so easily to condensed matter experts!

A LONG STORY

Quantum Hall physics is amazingly rich, despite being entirely about the basic problem of
the low-energy physics of electrons in 2+1 dimensions. We have barely scratched the surface
of the physics here.

Let’s mention one interesting application of the above dualities. We said that an emergent
U(1)k Chern-Simons theory describes the Laughlin state. The lightest excitations in this
theory are observed to be anyons, carrying charge 1/k times that on the electron. We could
add these excitations to our effective field theory by including a bosonic field with charge 1
under the emergent U(1)k theory. But this theory is dual to some SU(k) theory coupled to a
fermion, a theory in which the gauge-invariant object is the SU(k) baryon, also a fermion for
k odd. This can be thought of as the electron. Then emergent matter field is then seen to be
another partonic description of the electron in which it is broken into k pieces, Ψ = ψ1 · · ·ψk.
This is then reflected in the structure of the wavefunctions proposed by Laughlin.

Secondly, we emphasized that the filling fraction does not uniquely determine the phase
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of matter we observe. Let’s just mention one example of that, at ν = 1
2 filling. In fact, at

ν = 5
2 (so there are two filled Landau levels, and then one half-filled Landau level, which

naively is equivalent to just the half-filled Landau level) we observe different physics to the
ν = 1

2 system. For example, it seems like the excitations carry different charges.
The Moore-Read or Pfaffian state proposed to describe this can be thought of as the

result of a deformation of the ν = 1
2 Fermi liquid state. In particular, recall that Fermi

liquids are unstable to weakly attractive interactions between electrons: they can enter a BCS
superconducting state! Indeed, it is thought that the physics of the ν = 5

2 state is that of a
superconducting state of composite fermions.
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Part X

Conclusion
A few closing words to try and draw some general lessons from what we have learned.

30. Summary

Let’s take stock of what we have learned. We started by quickly reviewing some standard
exact dualities in 2 and 3 dimensions. These introduced a few ideas (magnetic symmetries, defect
operators, the significance of topological terms, the potential for symmetry enhancement at self-dual
points, and so on) which crop up again and again in studying dualities.

Then we started getting our teeth into the concept of an IR duality, emphasizing the roles
of RG flows and CFTs in understanding low-energy physics. We illustrated this first with the
well-established example of particle-vortex duality, seeing how the phase diagram and operators
matched up (and in particular saw how understanding defect operators can play a crucial roles in a
duality). We then moved on to Abelian bosonization, taking a little time to appreciate the central
role of anomalies in understanding field theories. We also saw some of the subtleties involves in
Chern-Simons theory, from statistical transmutation and spin structure sensitivity to topological
degeneracy.

Then we studied the interrelations between these dualities, and then how they can be used to
propose new and interesting dualities. We emphasized that we cannot prove the existence of CFTs
using these techniques, but that this needn’t dispirit us even if there is no CFT realizing the IR
duality. We also discussed various non-Abelian generalizations of these dualities, including some
applications to the phase diagram of QCD.

Finally, we briefly reviewed connections to supersymmetry, discretized (and in particular lattice)
models and large N physics, before spending a little more time giving an application of the duality
to condensed matter physics in the context of the quantum Hall effect.

31. The Space of Quantum Field Theories

At the end of this course, one might be left wondering why any such dualities exist. We should
not be satisfied with a simplistic understanding of it as a coincidence – at the very least, having
some sort of intuitive justification would be nice.

We attempted to give some sense of this back in Chapter II: the idea was to seek a change
of variables in the path integral which preserves locality of the action. Then one can consider the
natural UV theories corresponding to the field content before and after the change of variables. One
might reasonably expect that a CFT accessible from one of the theories ought to be accessible from
the other.

This may be more practical in a lattice regularization, as discussed in Chapter VIII, where
we saw that a lattice realization of the XY model can be written as a gauged XY model. One can
then try to take the continuum limit of both theories, thereby constructing a continuum version of
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the whole flow from two distinct simple UV theories to a common interacting IR theory. This is
somewhat hit-and-miss, although the word has seen plenty of ingenious lattice constructions. Let us
try and attack the problem from a different angle.

Back in the introduction, and again on page 63, we mentioned the bootstrap program. We will
leave a detailed review to [14], but it is useful to impart a general sense of the significance of this
approach. At a very high level, this is to push towards a classification of all CFTs (and ideally all
QFTs). This means imposing the constraints arising from the fundamental definitions of field theory
and seeing what can possibly satisfy those constraints.

At a more practical level, most progress has been made by restricting further to field theories
whose spectrum satisfies certain additional requirements. For example, we might impose that
there is a SU(N f ) symmetry, and that there is a relevant operator transforming in the fundamental
representation of that symmetry. Typically, even a very small number of constraints seem to heavily
constrain the possible CFTs, even using a relatively small proportion of all possible constraints. It
seems plausible that supplying some very minimal data along the lines of the above may uniquely
identify CFTs. The general moral is that it is hard to satisfy the axioms of conformal field theory! If
this is right, we should think of CFTs are rare and typically isolated.

This gives a rather more mathematical and satisfying way to think about why dualities exist. If
we are given two distinct UV theories flowing to a CFT which is constrained by some minimal data
(the number of parameters we tune, their representations under the symmetry group, and anomalies)
which agrees, then in all likelihood there are not two possible CFTs that we could hit!

And why would we expect there to be distinct UV theories flowing to CFTs with the same
constraints? The key is to identify matter content which mediates some particular transition, perhaps
between two TQFTs for example. For us, this was made possible by level-rank duality. Then we
tune the minimal set of parameters to reach that transition, checking that this requires the same
amount of tuning on both sides (so that the putative set of relevant operators is the same). Then the
only remaining question is whether we hit a CFT. This is hard to predict. We are saved in some
cases where there is a parameter like N, and there is some approximation in which there clearly
appear to be some RG fixed points. But in general, we can say very little.

Nonetheless, with the perspective that CFTs are rare, the existence of IR dualities seems a little
less mysterious. But we are left with the big question: what CFTs do exist? That is a question we
are not yet quite ready to answer.
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Part XI

Chern-Simons Theories
In this section, we review some key facts about three-dimensional Chern-Simons theories.

A. Gauge Invariance

Chern-Simons theories – which exist in all odd dimensions – have many interesting properties.
The first, and most important, is that they are in fact gauge-invariant, despite being expressed with
explicit dependence on the gauge potential a. We’ll offer two ways to see the theory is gauge-
invariant: one direct computational method, and one more abstract approach. We will focus on
U(N) gauge theory, for which the level k Chern-Simons action is

kSCS[a] =
k

4π

∫
M

tr
(

a∧da− 2i
3

a∧a∧a
)

(A.1)

where we write out wedge products for clarity. One can set a different level for the U(1) and SU(N)

parts of U(N) by adding nSCS[tra]. Writing a = b+ c1N where b ∈ su(N) and c ∈ u(1), we have

U(N)k,k′ :
k

4π
tr
(

b∧db− 2i
3

b∧b∧b
)
+

k′N
4π

c∧dc (A.2)

where we take k′ = k+nN. We will argue below that k and n should be taken to be integers. The
slightly surprising N dependence arises from the quotient in

U(N) =
SU(N)×U(1)

ZN
. (A.3)

One direct way to analyze the gauge invariance of the theory is to simply implement a gauge
transformation a→ g−1ag+ ig−1dg in the action. Under this transformation (essentially because of
the Polyakov-Wiegmann property [72])

kSCS→ kSCS−
ik
4π

dtr(dgg−1∧a)+
k

12π
tr(g−1dg∧g−1dg∧g−1dg) (A.4)

changes in a rather elaborate way. The first term is a total derivative. If we impose suitable boundary
conditions, we can set it to zero. The second term is interesting; it is present only for non-Abelian
groups. It turns out that

w(g) =
1

24π2

∫
tr(g−1dg∧g−1dg∧g−1dg) ∈ Z (A.5)

is an integer-valued winding number provided g→ 1 ∈ SU(N) at infinity.34 Therefore, if exp(ikSCS)

is to be well-defined under arbitrary so-called large gauge transformations, we need only take k ∈ Z.

34Technically, this arises from the non-trivial homotopy group π3(SU(N)) = Z – it is a topological invariant of maps
from S3 → SU(N). This S3 is the one-point compactification of an R3 spacetime, which is possible because of the
boundary condition on g.
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The conclusion is that an SU(N) level is quantized to an integer due to the winding of gauge
transformations; however, the U(1) level is apparently unconstrained, subject to mild boundary
conditions.

It turns out that the U(1) levels should also be quantized in many circumstances. Simply
connected spacetimes do not have large U(1) gauge transformations. But if, for example, we insist
that the theory is well-defined on a thermal circle – when we compactify the time direction – then
there are gauge transformations which wrap that circle. If one considers a bundle corresponding to
a monopole with unit charge 1

2π

∫
space f = 1, then it follows once more that k ∈ Z. See [24] for an

accessible discussion of this issue.

A Four-Dimensional Embedding

It is perhaps more insightful to obtain the SU(N) result from a more mathematical approach
[73, 74] that actually goes back to the discovery of Chern-Simons theory. The key observation is
that the 3-dimensional Chern-Simons action is really the action of a 4-dimensional theory. We will
take our spacetime to be a closed, oriented 3-manifold M. Then there exists a 4-manifold X whose
boundary is ∂X = M – in fact, there are many such manifolds, which we will return to in just a
moment. Now consider an arbitrary connection a in a principal SU(N) bundle P→ X ; again, both
the bundle and the connection may be extended with bulk (4-dimensional) continuations PX ,b. Then
there is a natural quantity which we can compute by integrating over the 4 manifold, namely the
integral of the Pontryagin density

FX [b] =
1

8π2

∫
X

tr f ∧ f (A.6)

which is again clearly topological (independent of the metric). It is also gauge-invariant. If X was
a closed manifold, with no boundary, then FX [b] is the Chern-Weil formula for the second Chern
number c2(b;X) of the connection b, which is always a half-integer – and if X has a spin structure,
it is an integer. However, we know that X has a boundary, and that boundary is our spacetime M.

But this still tells us something useful about our various extensions. Suppose we looked at two
distinct extensions (X ,PX ,b) and (X ′,P′X ′ ,b

′). Then we could consistently glue them together along
their common boundary ∂X = ∂X ′ = M, forming the connection b̄. But then (accounting for their
relative orientation)

FX [b]−FX ′ [b′] = FX∪X ′ = c2(b̄;X ∪X ′) ∈ Z (A.7)

which establishes that the difference between the possible values of FX [b] depends on the particular
extension only by an overall half-integer or integer shift. In the presence of a spin structure, the
fractional part is well-defined; hence FM : a 7→ R/Z is a good functional given only 3 dimensional
data.

Now since we require only that the path integral (and hence eiS) is well-defined, we can in fact
use 2πkFM[a] in the action for an arbitrary integer k ∈ Z. All that remains is to find a 3 dimensional
way to compute this quantity, which is not too hard. We take X = M× [0,1], parametrizing the
interval with t ∈ [0,1]. The manifold is taken to shrink to a point at t = 0, whilst the boundary of
M lies at t = 1. Since SU(N) is simply connected, we can just assume that all bundles are trivial.
Therefore we can also take the continuation of the connection to be b = ta. Now the formula for FX
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is easy to compute. Exactly one of the four derivatives must be a t derivative, and hence (using the
language of 3-dimensional differential forms)

2πkFX [a] =
k

4π

∫
M

∫ 1

0
dt tr2∂t(ta)∧ [d(ta)− i(ta)∧ (ta)]

=
k

4π

∫
M

tra∧da
(∫ 1

0
dt 2t

)
− ia∧a∧a

(∫ 1

0
dt 2t2

)
=

k
4π

∫
M

tra∧da− 2i
3

a∧a∧a

≡ kSCS[a] (A.8)

is a perfectly well-defined term to include in the action.
Notice that the direct computation (A.4) is of course very closely related with what we have

done here; in fact, one can show directly that the Pontryagin density is a total derivative of a CS
term, tr f ∧ f ∝ d(a∧da−2i/3a∧a∧a).

We emphasize that the choice of a spin structure is essential to guarantee gauge invariance
of the Chern-Simons term with an odd coefficient – without a spin structure, the theory is only
gauge-invariant with an even coefficient.

This changes if a is made into a spinc field; in this case, there is a combination of the usual
U(1)1 action and a gravitational Chern-Simons term which is well-defined modulo 2π [60].

B. Degrees of Freedom

Having established that this theory is gauge invariant, we should try to understand how it
changes the field theory. A conventional approach to understanding the effect of the Chern-Simons
term – which is quadratic in the fields – is to analyze the classical equations of motion; a slightly
more sophisticated approach is to compute the propagator. We will summarize these computations
for the Abelian Maxwell-Chern-Simons theory, U(1)k; see [22] for a longer discussion of these
issues.

Consider the Lagrangian

L =− 1
4g2 fµν f µν +

k
4π

ε
µνρaµ∂νaρ . (B.1)

The classical field equations are

∂µ f µν +
kg2

4π
ε

νρσ fρσ = 0 (B.2)

which it is convenient to rewrite in terms of vµ = 1
2 εµνρ fνρ as[

∂µ∂
µ +

(
kg2

2π

)2
]

vν = 0 (B.3)

where we should remember that (up to magnetic charges) ∂µvµ = 0. We have eliminated any
gauge-dependence by expressing the theory in terms of vµ . Therefore, the theory contains a single
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transverse degree of freedom, with a mass

mtop =
kg2

2π
(B.4)

and the theory is said to be topologically massive. (One can also check that the spin of the excitation
is signk =±1.)

Alternatively, the propagator may be computed by adding a gauge fixing term Lgf =− 1
2g2ξ

(∂µaµ)2

and inverting the quadratic form in Fourier space. One finds

∆µν = g2

(
p2ηµν − pµ pν − imtopεµνρ pρ

p2
(

p2−m2
top
) +ξ

pµ pν

p4

)
(B.5)

and the pole clearly identifies the physical mass. (Taking ξ → 0 eliminates the spurious pole p = 0;
the term containing an ε does not lead to a propagating degree of freedom.)

Note that if the relevant parameter g2 → ∞ in the IR, the topological mass mtop also grows.
Hence we tend, in the IR, to a pure Chern-Simons theory with no propagating degrees of freedom at
all.

We should also note that, although the Higgs mechanism still “works” in pure Chern-Simons
theory (in the sense that a charged field φ gaining a VEV gives a mass to all excitations in the
theory), the way this happens is slightly different. In the unbroken phase, there is no photon, only
the two real degrees of freedom of φ . In the Higgs phase, we keep one massive degree of freedom
in φ , but the would-be Goldstone boson is eaten by the non-propagating longitudinal mode of the
gauge field, leaving a massive gauge mode. The key point is that there is still no light Goldstone
mode.
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