
P
o
S
(
L
H
C
P
2
0
1
9
)
0
0
9

A
TL

-P
H

Y
S-

PR
O

C
-2

01
9-

08
2

29
A

ug
us

t2
01

9

ATLAS pixel cluster splitting using Mixture Density
Networks

Elham E Khoda∗†, on behalf of the ATLAS Collaboration
Department of Physics and Astronomy, University of British Columbia
E-mail: elham.e.khoda@cern.ch

The high energy and luminosity of the LHC allow to study jets and hadronically-decaying tau
leptons at extreme energies with the ATLAS tracking detector. These topologies lead to charged
particles with an angular separation smaller than the size of the ATLAS Inner Detector sensitive
elements and consequently to a reduced track reconstruction efficiency. In order to regain part of
the track reconstruction efficiency loss, a neural network (NN) based approach was adopted in the
ATLAS pixel detector in 2011 for estimating particle hit multiplicity, hit positions and associated
uncertainties. Currently used algorithms in ATLAS will be briefly summarized. An alternative
algorithm based on Mixture Density Network (MDN) is currently being studied and the initial
performance is promising. As MDN can provide an estimate of position and uncertainty at the
same time, the execution can be faster compared to current ATLAS NNs. An overview of MDN
algorithm and its performance was highlighted in the poster. Comparisons were also made with
the currently used NNs in ATLAS tracking.
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1. Introduction

The innermost part of the ATLAS detector [1] is a tracking detector, called the inner detector
(ID). The ID [2] consists of a silicon pixel detector in the core surrounded by a silicon strip detector
and a transition radiation tracker in the outer region. The pixel detector has four layers in the central
region and two sets of three disks in the forward and backward regions [3, 4]. Charged particles
ionize the silicon bulk of a pixel sensor, then the created charges drift towards the electrodes across
the sensor due to the voltage difference. Typically charge from an ionizing particle gets deposited
in multiple pixels as shown in Figure 1 (left) due to charge drift in presence of a B-field, electron-
hole diffusion and δ -rays. The cluster formed by the activated pixels is called a hit. In a dense

Figure 1: Left:(a) In presence of ATLAS solenoid magnet the charges get diffused and drifted to nearby
pixels. (b) Charge clusters of two very close charge particles get merged. (c) δ rays extend the charge
cluster size [5]. Right: a schematic diagram where the clusters from two nearby tracks get merged.

environment, where the average separation between particles becomes comparable to the detector
granularity, their pixel clusters get merged as shown in Figure 1 (right). As a result multiple tracks
get associated with one hit. It is crucial to understand the multiplicity of a hit and eventually decide
which track(s) should get associated with that hit to reconstruct the tracks. A neural network-based
approach was introduced in ATLAS in 2011 [5] to identify clusters created from multiple charged
particles and estimate the hit positions.

2. Pixel cluster-splitting neural networks: current approach

There are three sets of neural networks in the current algorithm. There is a 3-class classifier,
number network, to determine the particle multiplicity of a given pixel cluster. The outputs of the
network can be 1,2 and≥ 3. There are three regression networks, position networks, corresponding
to the outputs of the number network to determine the hit position. The hit position is estimated
in the local x and local y1 coordinates. There are two error networks for each position network to
determine the associated uncertainties. The error networks are classifiers and there are total six of
them. In total there are ten different networks.

1The positions are measured in a frame of reference local to the pixel sensor considered, in which the local x and y
directions correspond to the transverse and longitudinal directions with respect to the beam line, respectively
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2.1 Building the networks

All the networks mentioned above are quite shallow with only two hidden layers. The layers
are not very dense either, ≤ 60 nodes in any layer. Hence, it is very fast to evaluate them. Particu-
larly these networks are called very frequently during track reconstruction, so making the network
evaluations faster is very important. There is a total of 60 input variables given to these networks
which include the following:

• A 7×7 digitized charge matrix, obtained from the calibration of time-over-threshold values
measured by the pixel sensors, centred on the charge centroid. The charge matrix has been
flattened into a vector of 49 elements in row-major order;

• A length-7 vector of pixel pitches in the local y direction, in which the pixel pitch (size) is
not constant;

• A binary variable encoding the inner detector region (endcap or barrel);

• An integer variable representing the cylinder (barrel) or disc (endcap) number;

• Incidence angles (θ ,φ ) of the track candidate.

More details about the network parameters and their performances can be found in the ATLAS
note [6].

2.2 Network training: least-squares formalism

Neural networks model a mapping between a set of training input variables, x = {x1, . . .xd}, to
a set of output variables, t = {t1, . . . tc}. Usually the networks are trained on a finite set of training
examples, {xq, tq}, where q labels a particular training example and runs from 1 to n. The usual
method of neural network training involves the minimization of the sum-of-square error, defined
over the training data set, of the form

E(w) =
1
2

n

∑
q=1

c

∑
k=1

[
fk(xq;w)− tq

k

]2 (2.1)

where tk denotes the components of the target vector and fk(x;w) denotes the corresponding outputs
of the network mapping function which is a function of network parameters, w, called weights and
biases. The error function is minimized w.r.t the weights to get the best prediction, fk(x;w∗); where
w∗ is the set of weight values which minimizes the error function. It turns out that fk(x;w∗) is the
conditional average 2 of the target data, conditioned on the input vector. This method is used in the
current algorithm.

3. Mixture Density Networks

The simple neural network-based algorithm performs well but there is scope for further im-
provement. Currently the hit positions and the associated uncertainties are estimated in two steps

2Conditional average of a quantity Q(t) is defined as: 〈Q|x〉 ≡
∫

Q(t)p(t|x)dt
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using two different types of network. One can try to reduce the steps by estimating the position and
uncertainties simultaneously. Furthermore, the performance of the error networks does not always
match expectation [6]. This can be alleviated by using a more powerful algorithm. So an alterna-
tive algorithm, mixture density networks (MDN) [7], based on probabilistic learning is introduced
which can estimate position and uncertainty together.

3.1 MDN algorithm

The main goal of the network training is always to learn the underlying data generator. The
data generator can be quantified as the input-target joint probability distribution, p(x, t). The joint
distribution can be written in terms of the conditional distribution as p(x, t) = p(t|x) · p(x). Since
p(x) is a property of the network inputs, the conditional probability is the quantity that gets mod-
elled through the network training. As described in section 2.2 the conventional method is to use
least-squares formalism but if we assume that the conditional distribution of target data is a Gaus-
sian, then the least-squares formalism can be obtained using the maximum likelihood [7]. So one
can start with the following conditional probability

p(t|x) =
c

∏
k=1

p(tk|x) =
1√

2πσ2
exp

[
− 1

2σ2

c

∑
k=1
{ fk(x;w)− tk}2

]
. (3.1)

Here σ is the global variance and the target variable (tk) mean is modelled with a very flexible
network function, fk(x;w). The values of the parameters w are determined from the finite set of
training examples {xq, tq} by maximizing the likelihood

L =
n

∏
q=1

p(tq,xq) =
n

∏
q=1

p(tq|xq)p(xq). (3.2)

The only w-dependent term in − log(L ) is the least-squares term. Thus minimizing it will give
the conditional average as an estimate of the network prediction. It is seen that the conditional
averages predicted by the networks are optimal for classification problems [7]. However in regres-
sion problems, the goal is to predict continuous variables and the conditional average represents a
very limited statistic. Hence there can be significant benefit by using a more complete description
of the target data distribution. Mixture Density Network is one such method. In this algorithm,
the Gaussian approximation is relaxed to a mixture model. The mixture model can be written as a
linear combination of different kernel functions (φi(t|x)) as

p(tq|xq) =
m

∑
i=1

αi(x)φi(t|x) (3.3)

where m is the number of mixture components, and parameter αi(x) is called mixing coefficients.
Only Gaussian kernels of the form

φi(t|x) =
1√

2πσi(x)2
exp
[
−‖t−µi(x)‖2

2σi(x)2

]
. (3.4)

are considered in this study since any density function can be approximated with this linear combi-
nation [8]. This is called a Gaussian mixture model (GMM). The parameters of the mixture model

3
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should be continuous functions of x and can be modelled using the outputs of a feed-forward
network. The combination of the feed-forward network and the mixture model is called mixture
density network [7]. Since mixing coefficients αi are probabilities they should add up to unity. To
impose this condition αi is defined as a softmax function [9, 10] of the network outputs (zi) as

αi =
exp(zα

i )

∑
M
j=1 exp(zα

j )
. (3.5)

The variances σ2
i of the kernel functions should be non-negative. So, they are defined as the

absolute value of the network outputs as

σ
2
ik = |zσ

ik|. (3.6)

The means µi represent location parameters and should be represented directly by the network
outputs as

µik = zµ

ik (3.7)

As before, the loss function is defined to be the − log(L ), hence can be written as

E =−∑
q

ln

[
m

∑
i=1

αi(xq)φi(tq|xq)

]
. (3.8)

Finally, the loss gets minimized with respect to the network weights and biases during the training
process. More detailed discussion can be found in [7] and [11].

3.2 Building MDN

The network is implemented using Keras [12] software package with Theano [13] as a back-
end. The feed-forward network is built using the Keras functional API with three dense hidden
layers. The layers are activated using Rectifier-Liner activation function. The output layer contains
GMM unit(s). There are three different networks for different cases, one for each of solutions to the

Output	LayerFeed-forward	Network

2D	Gaussian	Kernel	(s)

Output	of	the		
feed-forward		
network	

(Zi)

1-par&cle	clusters

2-par&cle	clusters

3-par&cle	clusters

1	kernel

2	kernels

3	kernels

Figure 2: Left: schematic diagram of the current work flow. Right: a schematic diagram of the MDN.

number network. The hit position values and the associated uncertainties can be estimated from
the network kernel parameters. For simplicity, only one Gaussian kernel with dimension two is
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considered in a GMM. The kernels are parametrized with mean and precision3. Two dimentional
kernels can predict the mean and uncertainty along both local x and y simultenously. A schematic
diagram of the workflow and the MDN structure is shown in Figure 2. A customised loss function
is developed for this study to calculate the negative log-likelihood (Eq. 3.8). The loss function uses
the network outputs as described in Eq. 3.5, Eq. 3.6 and Eq. 3.7 to estimate the model parameters
while calculating the loss. The optimization is done using Adam optimiser [14]. Details of the
network parameters are listed in Table 1.

Table 1: Table summarising the network structure and the hyperparameters. The input and output layer size
is denoted with parenthesis in the structure row of the table.

Hyperparamaters MDN (1 particle) MDN (2 particles) MDN (3 particles)
Structure (60)-100-50-50-(1-2-2) (60)-100-80-50-(2-4-4) (60)-100-80-50-(3-6-6)

Activation ReLu ReLu ReLu
Output Layer 1 GMM 2 GMM 3 GMM

Output activation (softmax-linear-absolute) (softmax-linear-absolute) (softmax-linear-absolute)
Learning rate 0.0001 0.0001 0.0001
L2 regularizer 0.0001 0.0001 0.0001

Batch Size 100 100 100
Gradient Clipping clipnorm = 1 clipnorm = 1 clipnorm = 1

Loss Function custom custom custom

The inputs are the same as described in section 2.1. The training, testing and validation sam-
ples were created using Monte Carlo simulation of dijet process where the truth-level jets have
transverse momentum between 1.8 to 2.5 TeV. A total of 12 million training examples were gener-
ated and they were split in 9 : 1 ratio as training and validation set, respectively. An independent
set of 5 million examples is used to evaluate the performance of these networks.

4. Results

The networks were trained up to the point where the loss gets saturated. The trained models
were evaluated on the testing set to get the predicted positions and uncertainties. Since MDNs
do two different predictions, two metrics are defined to examine their performance. The metric for
position estimation is the residual and defined as the difference between predicted and true position,
x(y)pred− x(y)true. The other metric is the pull and is defined as the ratio of residual over predicted
uncertainty:

pull =
xpred− xtrue

σx,pred
or

ypred− ytrue

σy,pred

For all the MDNs these two quantities are evaluated and their performance is compared with
the current networks. If the network predictions are very close to the true values the residuals
are expected to follow narrow-width distributions around zero. On the other hand, if the networks
predict uncertainties consistent with the predicted positions, then the pulls should follow a standard

3The precision is defined as inverse of variance.
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Figure 3: Residuals (left) and pulls (right) are compared for the two algorithms in local y direction for
1-particle IBL clusters. MDN (red curve) residuals look more peaked at zero and the pulls are also more
consistent with standard normal distribution [15].
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Figure 4: Residual (left) and pull (right) are compared for the two algorithms in local x (top) and local y
(bottom) direction for 2-particle barrel (without IBL) clusters. MDN (red curve) residuals look more peaked
at zero as well as more symmetric in x direction. The x pulls are also more consistent with standard normal
distribution where in the y direction they are very similar [15].

normal distribution. The performances are evaluated into different detector regions, barrel (central)
and endcap (forward, backward). Since the first barrel layer (IBL) has different pixel pitches, IBL
performance plots are made separately. The IBL-only performance plots in local y direction for
1-particle networks are shown in Figure 3. The residuals are narrower and the widths of the pull
distributions are closer to 1 for MDN. Similar performance plots for 2-particle networks are shown
in Figure 4. The performance of 3-particle networks on endcap clusters are shown in Figure 5 and
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Figure 6. In general MDN performs similarly or better than the current networks.
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Figure 5: Residuals (left) and pulls (right) are compared for the two algorithms in local x direction for
3-particle endcap clusters. MDN (red curve) residuals look more peaked at zero and the pulls are also more
consistent with standard normal distribution [15].
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Figure 6: Residuals (left) and pulls (right) are compared for the two algorithms in local y direction for
3-particle endcap clusters. MDN (red curve) residuals look more peaked at zero and the pulls are slightly
wider but consistent with standard normal distribution [15].

5. Conclusion

An MDN-based algorithm can estimate the hit position and uncertainties at the same time.
Only one MDN is required along with the number network. So this algorithm has the potential
to be faster than the current one. MDNs also perform better than the current position and error
networks. The residual distribution has a higher peak around zero indicating that more often the
predicted values are close to the true values. MDN pulls are also much closer to standard normal
distributions. So far all these studies are done in standalone set-ups and we haven’t been able to
study yet the improvements to the final track reconstruction or establish the timing comparison.
The MDN algorithm will be added soon in the ATLAS track reconstruction software framework to
do these studies. In future, quantity like impact parameter resolution will be estimated using the
new MDN algorithm. It will further help to understand any potential effect on flavor tagging. Upon
showing better performance on track reconstruction, MDN could be one of the powerful algorithms
for future tracking in high luminosity LHC.
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