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We present the calculation of the h→ γγ and h→ Zγ decay rates at the one-loop in the Stan-
dard Model Effective Field Theory (SMEFT), based on analyses published in refs. [1, 2]. The
calculation has been performed including all relevant SMEFT operators up to mass-dimension 6,
without resorting to any flavour or CP-conservation assumptions. The expressions for the on-shell
amplitudes have been checked to be gauge invariant, renormalisation scale invariant and gauge
fixing parameter independent. Final results are presented as compact semi-numerical formulae,
easy to use in the interpretation of experimental data or in multi-parameter fits constraining the
SMEFT parameters.
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1. h→ γγ and h→ Zγ decays in New Physics searches

The Higgs boson decay processes h→ γγ and h→ Zγ are extremely important probes for
physics beyond the Standard Model (SM). Both processes are:

• measured experimentally with growing accuracy (especially h→ γγ),

• predicted in SM with good accuracy and small theoretical uncertainties,

• generated in the SM at loop level only, thus sensitive to virtual contributions from new parti-
cles.

Therefore, measurements of their decay rates can provide valuable constraints on New Physics
models.

Respective experimental searches are actively performed by the CMS and ATLAS collabora-
tions at LHC [3, 4, 5, 6]. The h→ γγ decay has been observed. Both collaborations parametrize
the result for its decay rate normalised to the SM prediction, using the quantity:

Rh→γγ ≡ 1+δRh→γγ =
Γ(EXP,h→ γγ)

Γ(SM,h→ γγ)
(1.1)

The reported results are within 15% w.r.t. the SM prediction:

ATLAS [4]: Rh→γγ = 0.96±0.14

CMS [3, 5]: Rh→γγ = 1.18+0.17
−0.14 (1.2)

For the h→ Zγ decay only the upper bound is currently known. Using the data from center-of-mass
energy

√
s = 13 TeV proton-proton collisions with integrated luminosity 36.1 fb−1 and assuming

Higgs boson mass Mh = 125.09 GeV ATLAS [6] has found at 95% confidence level

ATLAS [6]: µh→Zγ =
σ(pp→ h)×Br(h→ Zγ)

σ(pp→ h)SM×Br(h→ Zγ)SM
. 6.6. (1.3)

The results listed above can be used to constrain parameters of theories going beyond the SM. In
recent years, Effective Field Theory extension of the Standard Model (SMEFT) became a widely
accepted way of parametrizing possible deviations from the SM predictions in an universal way,
independent on the details of unknown new interactions of higher energy models. SMEFT is con-
structed by adding to the SM Lagrangian all independent gauge invariant operators constructed out
of the SM fields, up to some maximal mass dimension. For most applications it is sufficient to
consider operators up to dimension 6:

LSMEFT = L(4)
SM +

1
Λ

∑
X

CX
5 Q(5)

X +
1

Λ2 ∑
X

CX
6 Q(6)

X + . . . (1.4)

where Λ is the typical scale of particle masses in high energy theory, and CX are dimensionless
Wilson coefficients multiplying higher order operators QX . The classification of all 64 independent
dimension-5 and 6 operator classes in SMEFT (called “Warsaw basis”) was given in ref. [7].

In this contribution, we compare the experimental results (1.2, 1.3) with predictions of SMEFT
including operators up to mass-dimension 6, based on analyses published in refs. [1, 2].
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X3 ϕ4D2 ψ2ϕ3

QW ε IJKW Iν
µ W Jρ

ν W Kµ

ρ QϕD
(
ϕ†Dµϕ

)∗ (
ϕ†Dµϕ

)
Qeϕ (ϕ†ϕ)(l̄perϕ)

Qϕ� (ϕ†ϕ)�(ϕ†ϕ) Quϕ (ϕ†ϕ)(q̄purϕ̃)

Qdϕ (ϕ†ϕ)(q̄pdrϕ)

X2ϕ2 ψ2Xϕ ψ2ϕ2D and ψ4

QϕB ϕ†ϕ BµνBµν QeW (l̄pσ µνer)τ
IϕW I

µν Q(3)
ϕl (ϕ†i

↔
D I

µ ϕ)(l̄pτ Iγµ lr)

QϕW ϕ†ϕ W I
µνW Iµν QeB (l̄pσ µνer)ϕBµν Qll (l̄pγµ lr)(l̄sγµ lt)

QϕWB ϕ†τ Iϕ W I
µνBµν QuW (q̄pσ µνur)τ

Iϕ̃ W I
µν

QuB (q̄pσ µνur)ϕ̃ Bµν

QdW (q̄pσ µνdr)τ
Iϕ W I

µν

QdB (q̄pσ µνdr)ϕ Bµν

Table 1: Dimension-6 operators classes contributing to h→ γγ decay amplitude. For brevity fermion chiral
indices L,R are suppressed.

2. h→ γγ and h→ Zγ decay rate calculation in SMEFT

2.1 Contributing operators

In the general case 17 classes of dimension-6 operators in Warsaw basis contribute to h→ γγ

and 23 such classes contribute h→ Zγ decay amplitudes (16 operator classes are common for both
decays). Operators contributing to h→ γγ decay are listed, in the notation of ref. [7], in Table 1
(see ref. [2] for the analogous table for h→ Zγ decay).

There are no contributions from CP-violating operators up to dimension-6 terms in SMEFT
expansion. This is based upon the fact that the SM amplitude is CP-invariant (symmetric in particle
momenta interchange) and all interference terms with CP-violating coefficients (anti-symmetric in
particle momenta interchange) vanish identically at the order O( 1

Λ2 ).

2.2 Amplitude calculations

Diagram classes contributing to h→ γγ transition amplitude are illustrated in Fig. 1 . They
include the SMEFT tree-level contribution, the 1PI vertex corrections from various classes of oper-
ators, the vertex counterterms to Wilson coefficients and tadpole and Zγ self-energy contributions
with their associated counterterms. Diagrams contributing to the h→ Zγ process are similar and
differ only by the additional self-energy corrections on the external Z-boson line.

Loop calculations involve interactions of complicated structure, including 3-, 4- and 5-tuple
primary vertices, some of them momentum dependent, many including scalar and tensor Dirac
structures [8]. To avoid calculational mistakes, all computations were performed analytically (with
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Figure 1: Diagram classes contributing to h→ γγ decay. Crosses denote SM counterterms and the black
boxes indicate pure d = 6 operator insertions.

the help of SmeftFR Mathematica symbolic package [9]1) in general Rξ gauges, keeping inde-
pendent ξA,ξW ,ξZ parameters in propagators of photon, W boson and Z boson, respectively. Exact
cancellation of all the gauge parameters in the final expressions for the decay amplitudes provided
a strict cross-check of the correctness of our analysis.

Contrary to the SM results, both decay amplitudes in SMEFT are infinite at the 1-loop level.
Removing infinities require non-trivial multi-parameter renormalization procedure. To that end,
hybrid renormalisation scheme has been used:

• for direct connection with measured quantities, the SM parameters were renormalized using
the on-shell scheme (based on the scheme developed in ref. [10]).

• set of well measured quantities, GF ,MW ,MZ,Mh,mt and lighter quark masses, have been
used as the numerical input for SM parameters. In the numerical analysis we assume:

GF = 1.1663787(6)×105 GeV2,

MW = 80.385(15) GeV,

MZ = 91.1876(21) GeV,

Mh = 125.09±0.24 GeV,

mt = 173.1±0.6 GeV.

• Wilson coefficients of dimension-6 operators are renormalised in the MS scheme, so they
can be split into running C-coefficients and counterterms as

C̄(µ)−δC̄(µ) (2.1)

where µ is the renormalisation scale and δC̄ is a counterterm subtracting the infinite part
only.

1SmeftFR code is publicly available at www.fuw.edu.pl/smeft
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Denoting the scalar and transverse vector boson self-energy functions by ΠHH and ΠVV , respec-
tively, and using symbol ΓX for the 1PI vertex correction, the finite renormalized amplitude of
h→ γγ decay can be expressed as:

iA µν(h→ γγ) == 4i
[

pν
1 pµ

2 − (p1 · p2)gµν
]
×{

c2 vCϕB

[
1+Γ

ϕB− δCϕB

CϕB −
δv
v

+
1
2

∂Π′HH(M
2
h)

∂ p2 +
∂Πγγ(0)

∂ p2 +2tanθW
ΠZγ(0)+δm2

Zγ

M2
Z

]

+s2 vCϕW

[
1+Γ

ϕW − δCϕW

CϕW − δv
v

+
1
2

∂Π′HH(M
2
h)

∂ p2 +
∂Πγγ(0)

∂ p2 − 2
tanθW

ΠZγ(0)+δm2
Zγ

M2
Z

]

−scvCϕWB

[
1+Γ

ϕWB− δCϕWB

CϕWB −
δv
v

+
1
2

∂Π′HH(M
2
h)

∂ p2 +
∂Πγγ(0)

∂ p2 − 2
tan2θW

ΠZγ(0)+δm2
Zγ

M2
Z

]

+
1

MW
Γ

SM
+ ∑

X 6=ϕB,ϕW,ϕWB
vCX

Γ
X

}
finite

(2.2)

with c ≡ cosθW = MW
MZ

and s ≡ sinθW . Explicit analytical expressions for 2- and 3-point Green’s
functions in eq. (2.2) and for the δv, δm2

Zγ
counterterms can be found in ref. [1], while the analo-

gous expressions for the A µν(h→ Zγ) are given in ref. [2].
As a cross-check of calculations, the final results for both amplitudes have been explicitly

checked to be

• finite

• gauge invariant (ξ -parameters independent)

• renormalisation scale invariant, in the sense d
dµ

A (h→ γγ)(µ) = d
dµ

A (h→ Zγ)(µ) = 0 (for
the proof using also the results of refs. [11, 12, 13]).

3. Semi-analytical formulae and constraints on the Wilson coefficients

After substituting known SM parameter values, the results for δRh→γγ and δRh→Zγ can be
presented in terms of compact semi-analytic formulae, providing valuable and easy to use input for
the experimental analyses and for multi-dimensional fits constraining SMEFT parameters.

Neglecting the terms with numerical coefficients smaller than 0.05, one has:

δRh→γγ ' 0.18

(
C``

1221−Cϕ`(3)
11 −Cϕ`(3)

22
Λ2

)
+0.12

(
Cϕ�−2CϕD

Λ2

)
(3.1)

−
[

48.0−1.1log
µ2

M2
W

]
CϕB

Λ2 −
[

14.3−0.1log
µ2

M2
W

]
CϕW

Λ2 +

[
26.2−0.5log

µ2

M2
W

]
CϕWB

Λ2

+

[
0.2−0.2log

µ2

M2
W

]
CW

Λ2 +

[
2.1−0.8log

µ2

M2
W

]
CuB

33
Λ2 +

[
1.1−0.5log

µ2

M2
W

]
CuW

33
Λ2 + . . .
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δRh→Zγ ' 0.18
Cll

1221−Cϕl(3)
11 −Cϕl(3)

22
Λ2 +0.12

Cϕ�−CϕD

Λ2 (3.2)

+

[
15.0−0.4log

µ2

M2
W

]
CϕB

Λ2 −
[

14.9−0.2log
µ2

M2
W

]
CϕW

Λ2 +

[
9.4−0.3log

µ2

M2
W

]
CϕWB

Λ2

+

[
0.1−0.2log

µ2

M2
W

]
CW

Λ2 −
[

0.1−0.04log
µ2

M2
W

]
CuB

33
Λ2 +

[
0.7−0.3log

µ2

M2
W

]
CuW

33
Λ2 + . . .

Full semi-analytical expressions, including the small terms neglected in formulae given above, can
be found in refs. [1, 2].

Eq. (3.2) combined with experimental measurements of δRh→γγ can be used to derive the
order-of-magnitude bounds on the allowed values of several Wilson coefficients in SMEFT, valid on
assumption of no significant fine-tuning between terms in eq. (3.2). Assuming one non-vanishing
Wilson coefficient at a time, at the scale µ = MW one has for operators contributing already at tree
level:

|CϕB|
Λ2 .

0.003
(1 TeV)2

|CϕW |
Λ2 .

0.011
(1 TeV)2

|CϕWB|
Λ2 .

0.006
(1 TeV)2 (3.3)

Competing constraints on CϕB,CϕW ,CϕWB from electroweak precision measurements have similar
order of magnitude.

Interestingly, loop level contributions from CuB
33 and CuW

33 to δRh→γγ are magnified by the top
quark mass in loop by O(10) and for µ = MW lead to constraints more than an order of magnitude
stronger than those derived from direct (tree-level) t̄tZ and single top production measurements at
LHC:

|CuB
33 |

Λ2 .
0.071

(1 TeV)2
|CuW

33 |
Λ2 .

0.133
(1 TeV)2 (3.4)

Expression for δRh→Zγ depends on the extended set of Wilson coefficients, including all apart
one of those which contribute to the δRh→γγ . However, numerical prefactors in all terms in eq. (3.3)
are numerically smaller than in eq. (3.2). As also current experimental measurements of δRh→Zγ

are less constraining, eq. (3.3) leads to weaker order-of-magnitude bounds than given in eqs. (3.3,
3.4). Nevertheless, using both expressions simultaneously can strengthen the more sophisticated
limits obtained from the multi-dimensional SMEFT parameter fits.

4. Summary

We have discussed the h→ γγ and h→ Zγ decay rates at one-loop in SMEFT [1, 2], pre-
senting the final results in the form of simple and easy to use in other analyses semi-analytic for-
mulae depending linearly on the set of Wilson coefficients of dimension-6 operators. We have
shown that with the current experimental accuracy δRh→γγ can be used to put constraints on
CϕB,CϕW ,CϕWB,CuB

33 and CuW
33 coefficients which are comparable or stronger than derived from

other measurements. Comparing numerical factors in expressions for both decay rates, one can
also draw the general conclusion that in all scenarios barring accidental cancellation between con-
tributions, it is unlikely to observed deviations from the SM prediction in the h→ Zγ decay without
observing them first in h→ γγ decay.
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