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We perform an effective field theory analysis of the τ−→ π−π0ντ decays, that includes the most
general interactions between Standard Model fields up to dimension six, assuming left-handed
neutrinos. This approach corresponds to the low-energy limit of the SMEFT, which is the EFT
of the SM in absence of New Physics up to few TeV. We constrain as much as possible the
necessary Standard Model hadronic input using chiral symmetry, dispersion relations, data and
asymptotic QCD properties. As a result, we set precise (competitive with low-energy and LHC
measurements) bounds on (non-standard) charged current tensor interactions, finding a very small
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be very useful in either confirming or further restricting new physics tensor current contributions
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1. Introduction

The Standard Model of particle physics [1–3] is one of the most successful theories that de-
scribes strong, weak and electromagnetic interactions. In order to test and search for departures
from the SM we use effective field theories which provide us with a model-independent framework
to parameterize possible New Physics at low energies.
The SMEFT [4, 5] is the effective field theory of the SM that realizes its symmetries, it is written
as series of higher dimensional operators constructed with the SM fields,

LSMEFT = LSM +∑
αi

Λ2 O
(6)
i +∑

βi

Λ4 O
(8)
i . (1.1)

Since odd-dimensional operators violate both lepton number and baryon number, the contributions
coming from these operators are expected to be very suppressed.
The SMEFT asumes a gap between the vev and the Λ scales (v� Λ), the last corresponds to the
characteristic scale of NP, this seems to be a good hypothesis since there is no evidence of NP at
the LHC.
There are 2499 dimension-six operators contributing to the SMEFT lagrangian, this quantity is
enormously reduced when we neglect the effects of lepton-flavor violating (LFV) and flavor-
changing neutral current (FCNC) operators.
Working at low energies, the heavy fields H, W± and Z bosons and heavy quarks (q = c, b, t) are
integrated out of the theory. The effective couplings need to be run down since now the information
of these heavy fields is also encoded in these couplings.
In this proceeding, we describe how the τ−→ π−π0ντ decays can be used as a tool for the search
of tensor interactions (ε̂T ) at low energies. A full discussion and more details are found in Ref. [6].

2. Effective theory analysis of τ → ντ ūd

The O (1GeV) effective lagrangian for semileptonic strangeness and lepton-flavor conserving
charged current transitions which involves any lepton (` = e, µ, τ) and regards only left-handed
neutrinos (the subscripts L(R) denote left-(right-)handed projection) is written as

LCC =−4GF√
2

[
(1+[vL]``) ¯̀Lγµν`L ūLγ

µdL +[vR]`` ¯̀Lγµν`L ūRγ
µdR

+[sL]`` ¯̀Rν`L ūRdL +[sR]`` ¯̀Rν`L ūLdR

+[tL]`` ¯̀Rσµνν`L ūRσ
µνdL

]
+h.c.,

(2.1)

where GF is the tree-level definition of the Fermi constant and σ µν ≡ i [γµ ,γν ]/2. vL,R, sL,R

and tL are low-scale effective couplings, by setting vL,R = sL,R = tL = 0 we recover the SM effective
lagrangian. As usual, we select µ = 2GeV in the MS scheme.

By introducing equivalent couplings εS = sL+sR, εP = sL−sR, εL,R = vL,R and εT = tL we work
in an advantageous framework with defined-parity states. Particularizing for the case of τ-lepton,
we get the effective lagrangian for semileptonic transitions
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LCC =−GF√
2

Vud(1+ εL + εR){τ̄γµ(1− γ
5)ντ ū

[
γ

µ − (1−2ε̂R)γ
µ

γ
5]d

+ τ̄(1− γ
5)ντ ū(ε̂S− ε̂Pγ

5)d

+2ε̂T τ̄σµν(1− γ
5)ντ ūσ

µνd}+h.c.,

(2.2)

where ε̂i ≡ εi/(1+ εL + εR) for i = R,S,P,T . Working at linear order in the couplings, we are
not sensitive to εL + εR because it affects the overall normalization of the Fermi constant.

3. Semileptonic τ decay amplitude

For the τ− → π−π0ντ decays only vector, scalar and tensor currents contribute. The decay
amplitude reads 1

M = MV +MS +MT

=
GFVud

√
SEW√

2
(1+ εL + εR)

[
LµHµ + ε̂SLH +2ε̂T LµνHµν

]
,

(3.1)

where the following lepton currents were introduced:

Lµ = ū(P′)γµ(1− γ
5)u(P), (3.2a)

L = ū(P′)(1+ γ
5)u(P), (3.2b)

Lµν = ū(P′)σµν(1+ γ
5)u(P). (3.2c)

The scalar (H), vector (Hµ ) and tensor (Hµν ) hadron matrix elements in eq. (3.1) can be con-
structed using Lorentz invariance and discrete QCD symmetries. Thus, these are

H = 〈π0
π
−|d̄u|0〉 ≡ FS(s), (3.3a)

Hµ = 〈π0
π
−|d̄γ

µu|0〉=CV QµF+(s)+CS

(
∆π−π0

s

)
qµF0(s), (3.3b)

Hµν = 〈π0
π
−|d̄σ

µνu|0〉= iFT (s)(P
µ

π0Pν

π−−Pµ

π−Pν

π0) . (3.3c)

In this expressions FS, F+, F0 and FT are form factors, the hadronization procedure is encoded
in these scalar functions. Taking the divergence of the vector current, eq. (3.3b), we can relate
FS (s) with F0 (s) via

FS(s) =CS
∆π−π0

(md−mu)
F0(s). (3.4)

As in Ref. [7], the scalar current can be absorbed in the vector current amplitude by making the
following replacement

CS
∆π−π0

s
−→CS

∆π−π0

s

[
1+

s ε̂S

mτ(md−mu)

]
, (3.5)

1As in Ref. [7], we take the short-distance electroweak radiative corrections encoded in SEW [8–15] as a global
factor in eq. (3.1). Although SEW does not affect the scalar and tensor contributions, the error of this approximation is
negligible and renders simpler expressions than proceeding otherwise.
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in eq. (3.3b).
Since form factors need to comply with analyticity and unitarity, we used previous results that
employed a phase dispersive relation for the scalar [16], vector [17] and tensor [18,19] form factors
implementing the known chiral constraints at low-energies and QCD asymptotics at short distances
(high-energies).

4. Decay observables

To study the τ− → π−π0ντ decays we need to use as many observables as we can in order
to search for possible NP effects. In this section we explore the effects of non-standard tensor
and scalar interactions on the hadronic spectrum, branching ratio, Dalitz plot distributions and the
measurable forward-backward asymmetry.
The differential decay width of the τ−→ π−π0ντ decays, in the τ lepton rest frame, is

d2Γ

dsdt
=

1
32(2π)3M3

τ

|M |2, (4.1)

where |M |2 represents the unpolarized spin-averaged squared matrix element, s is the π−π0 system
invariant mass. The kinematic region is limited by t−(s)≤ t ≤ t+(s) and (mπ0 +mπ−)

2 ≤ s≤M2
τ ,

where

t±(s) =
1
2s

[
2s(M2

τ +m2
π0− s)− (M2

τ − s)(s+m2
π−−mπ0)± (M2

τ − s)
√

λ (s,m2
π− ,m

2
π0)
]
, (4.2)

and λ (x,y,z) = x2 + y2 + z2−2xy−2xz−2yz is the Kallen function.
By using t = m2

π− +m2
τ − 2EπEτ + 2|~pπ ||~pτ |cosθ , where θ is the measurable angle between the

momentum of the charged pion and the τ-lepton, we get the angular distribution (see Appx. B).

4.1 Dalitz Plots

The unpolarized spin-averaged squared amplitude that includes possible non-standard weak
charged current interactions yields

|M |2 = G2
F |Vud |2SEW

s2 (1+ εL + εR)
2 [M00 +M+++M0++MT++MT 0 +MT T ] , (4.3)

where M00, M++ and MT T correspond to scalar, vector, and tensor contributions respectively, and
M0+, MT+ and MT 0 are their interferences. These expressions are in Appx. A. The scalar form
factor is suppressed by a ∆π−π0 factor, which is small, leading to negligible effects even for |ε̂S| ∼ 1.
The Dalitz plot for the case of SM (ε̂S = 0, ε̂T = 0) is shown in fig. 1.

In order to appreciate the effects of non-vanishing ε̂S,T in Dalitz plots, we introduce

∆̃(ε̂S, ε̂T ) =

∣∣∣|M (ε̂S, ε̂T )|2−|M (0,0)|2
∣∣∣

|M (0,0)|2
. (4.4)

Figures 2 and 3 show the ∆̃(ε̂S, ε̂T ) plots for some representative values of ε̂S,T . In fig. 2, we take
an unrealistic 2 value for ε̂S setting ε̂T = 0 which is obtained from the τ−→ π−π0ντ decays. In

2When it is compared to the bounds obtained from decays at low-energies and from colliders [7, 20, 21], if LU is
assumed.
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Figure 1: Dalitz plot distribution |M |200 in the SM, eq. (4.3): Differential decay distribution for τ− →
π−π0ντ in the (s,t) variables (left). The right-hand figure shows the differential decay distribution in the
(s,cosθ) variables, eq. (B.1). The Mandelstam variables, s and t, are normalized to M2

τ .

Figure 2: Dalitz plot distribution for ∆̃(ε̂S, ε̂T ), (4.4), in the τ− → π−π0ντ decays: left-hand side corre-
sponds to eq. (4.3) and right-hand side corresponds to the differential decay distribution in the (s,cosθ)

variables, both with (ε̂S = 1.31, ε̂T = 0). The Mandelstam variables, s and t, are normalized to M2
τ .

order to detect scalar interaction we need to measure Dalitz plots with an accuracy of ∼ 1% (it
is reduced to ∼ 0.1% for a more realistic value). In fig. 3, we use a non-vanishing value for ε̂T

obtained from these decays setting ε̂S = 0, in order to appreciate the effects of tensor interactions
we need to measure Dalitz plots with a precision of ∼ 0.1%. The same is true for the angular
distribution.

4.2 Decay rate

By integrating upon the t variable in eq. (4.1), we get the π−π0 invariant mass distribution

dΓ

ds
=

G2
F |Vud |2m3

τSEW

384π3s
(1+ εL + εR)

2
(

1− s
m2

τ

)2

λ
1/2 (s,m2

π0 ,m2
π−
)

×
[
XVA + ε̂SXS + ε̂T XT + ε̂

2
S XS2 + ε̂

2
T XT 2

]
.

(4.5)
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Figure 3: Dalitz plot distribution for ∆̃(ε̂S, ε̂T ), (4.4), in the τ− → π−π0ντ decays: left-hand side corre-
sponds to eq. (4.3) and right-hand side corresponds to the differential decay distribution in the (s,cosθ)

variables, both with (ε̂S = 0, ε̂T =−0.014). The Mandelstam variables, s and t, are normalized to M2
τ .

The expressions for XVA, XS, XT , XS2 and XT 2 are found in Appx. C. We recover the SM limit when
εL = εR = ε̂S = ε̂T = 0. In fig. 4, this observable is plotted for a non-vanishing ε̂S (ε̂T ) . On the
one hand, the deviation from the SM due to tensor interactions (dotted line) is very tiny. On the
other hand, it seems that the deviation from the SM due to scalar interactions (dashed line) above
1.2GeV is bigger but it corresponds to an unrealistic value for ε̂S, it goes away when we take into
account a more realistic one, also we have to recall that this model is reliable up to 1GeV.

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
10-6

10-4

0.01

1

s (GeV)

1 Γ
τ

dΓ

d
s

(π
0
-
π
-
)
(G
eV

-
1
)

Figure 4: The π0π− hadronic invariant mass distribution for the SM (solid line) and ε̂S = 1.31, ε̂T = 0
(dashed line), ε̂S = 0, ε̂T = −0.014 (dotted line). Axes units are given in GeV powers and the decay distri-
butions are normalized to the tau decay width.
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4.3 Forward-backward asymmetry

The forward-backward asymmetry for the τ−→ π−π0ντ decays is given by

Aππ(s) =
−3CS

√
λ
(
s,m2

π− ,m
2
π0

)
2s2
[
XVA + ε̂SXS + ε̂T XT + ε̂2

S XS2 + ε̂2
T XT 2

] (1+
sε̂S

mτ(md−mu)

)
∆π−π0

×
{

CV Re[F0(s)F∗+(s)]+
2s ε̂T

mτ

Re[FT (s)F∗0 (s)]
}
,

(4.6)

when we take ε̂S = ε̂T = 0 the SM forward-backward asymmetry is recovered, which agrees with
the prediction in Ref. [16] (this asymmetry was firstly studied in Ref. [22]). This is plotted in fig.
5.
In fig. 6, we plot the forward-backward asymmetry for non-vanishing ε̂S,T . For tensor interactions

0.30 0.35 0.40 0.45 0.50

-0.8

-0.6

-0.4

-0.2

0.0

s (GeV)

A
F

B

0.6 0.8 1.0 1.2 1.4 1.6 1.8

-0.004

-0.002

0.000
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0.004

0.006
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A
F

B

Figure 5: The forward-backward asymmetry in the τ−→ π−π0ντ decay as a function of the ππ energy for
the SM case. The low-energy region is shown in the left plot and remaining energy range is represented in
the right plot.

(dotted line), we cannot distinguish their effects from the SM asymmetry distribution. In the case
of scalar interactions, we have an enhancement with respect to the SM asymmetry but this distri-
bution corresponds to an unrealistic value for ε̂S. This enhancement makes the forward-backward
asymmetry an excellent observable to study non-standard scalar interactions. The deviation from

0.30 0.35 0.40 0.45 0.50

-0.8

-0.6

-0.4

-0.2

0.0

s (GeV)

A
F

B

0.6 0.8 1.0 1.2 1.4

-0.4

-0.2

0.0

0.2

0.4

0.6

s (GeV)

A
F
B

Figure 6: Forward-asymmetry for ε̂S = 1.31, ε̂T = 0 (dashed line) compared to the SM prediction (solid
line). The left plot shows the low-energy region and the right plot includes the remaining energy range.
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the SM asymmetry is plotted in fig. 7, where we have define ∆AFB as

∆AFB = AFB(s, ε̂S, ε̂T )−AFB(s,0,0). (4.7)

In these plots, the effect due to scalar and tensor interactions is small even when we take into
account more realistic values for ε̂S,T .

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

-0.02

0.00

0.02

0.04

0.06

s (GeV)

Δ
A

F
B

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

-0.00005

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

s (GeV)

Δ
A

F
B

Figure 7: Normalized difference with respect to the SM for the forward-backward asymmetry (∆AFB) in
the case of scalar interactions (left plot, with ε̂S = 0.008, ε̂T = 0) and tensor interactions (right plot, ε̂T =

−0.001, ε̂S = 0).

5. Limits on ε̂S and ε̂T

If we integrate the invariant mass distribution using the expressions for the form factors [16,
17], we get the τ− → π−π0ντ decay width as a function of the effective couplings. We can use
it in order to set bounds on ε̂S and ε̂T . For that, we measure the deviation due the effects of
non-vanishing effective couplings (Γ) with respect to the SM limit (Γ0) obtained neglecting them.
Using the best fit results in ref. [17], we get a value for Γ0 that corresponds to a branching fraction
of (25.53±0.24)% which agrees with the PDG value of (25.49±0.09)%. We measure the relative
deviation produced by NP contributions as follows

∆≡ Γ−Γ0

Γ0 = αε̂S +β ε̂T + γε̂
2
S +δ ε̂

2
T , (5.1)

where α = 3.5×10−4, β = 3.3+0.6
−0.4, γ = 2.2×10−2 and δ = 4.7+2.0

−1.0, these values take into account
the theory error. Eq. (5.1) is a quadratic function of the effective couplings that can be used to
set bounds on tensor and scalar interactions. First, we set a vanishing effective coupling ε̂T (ε̂S)
which let ∆ as a function of the non-vanishing coupling ε̂S (ε̂T ). This is shown in fig. 8, the dotted
line corresponds to the value of ∆ using the current measurement for the branching ratio (at 3σ

deviations) and the dashed line corresponds to an error reduced by a factor three, which could be
achieve by Belle-II (the theory error is not assumed to decrease in this procedure). We get the
following constraints: −1.33 ≤ ε̂S ≤ 1.31 with ε̂T = 0 and [−0.79,−0.57]∪ [−1.4,1.3] · 10−2 for
ε̂T with ε̂S = 0. This values were used in the previous section.
We can also fix joint constraints on these effective couplings using the value of ∆ obtained through

the current measurement and the eq. (5.1), this is plotted in fig. 12 in Ref. [6]. These results are

7
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Figure 8: ∆ as a function of ε̂S for ε̂T = 0 (left-hand) and ε̂T for ε̂S = 0 (right-hand) for τ− → π−π0ντ

decays. Horizontal lines represent the values of ∆ according to the current measurement and theory error (at
three standard deviations) of the branching ratio (dashed line) and the hypothetical case of this value being
measured by Belle-II with three times reduced error (dotted line).

∆ limits ε̂S (ε̂T = 0) ε̂T (ε̂S = 0) ε̂S ε̂T

Belle [−1.33,1.31] [−0.79,−0.57]∪
[−1.4,1.3] ·10−2

[−5.2,5.2] [−0.79,0.013]

3-fold improved
measurement

[−1.20,1.18] [−0.79,−0.57]∪
[−1.1,1.1] ·10−2

[−5.1,5.1] [−0.78,0.011]

Table 1: Constraints on the scalar and tensor couplings obtained (at three standard deviations) through the
limits on the current branching ratio measurements and the hypothetical case where this value be measured
by Belle II with a three times smaller error. Theory errors are included.

summarized in table 1.
Using the normalized spectrum (1/Nππ)(dNππ/ds) reported by Belle [23] and the current branch-

ing ratio, we performed a fit using the funtion

1
Γ(ε̂S, ε̂T )

dΓ(s, ε̂S, ε̂T )

ds
. (5.2)

We get ε̂T = (−1.3+1.5
−2.2) · 10−2 restricting |ε̂S| < 0.8× 10−2 [20, 21], which shows a slight prefer-

ence (0.9 σ ) to charged current tensor interactions.
Finally, if we assume LU it is possible to compared the results obtained from the τ− → π−π0ντ

decays with those obtained from low-energy processes and colliders [7, 20, 21]. For scalar interac-
tions, we found |ε̂S| < 1.3 while the limit from low-energy decays is |ε̂S| < 0.34× 10−2 (at 90%
C.L.). On the other hand, we get ε̂T = (−1.3+1.5

−2.2) · 10−2 for tensor interactions which is a very
competitive constraint when it is compared to |ε̂T | < 0.1× 10−2 (at 90% C.L.) obtained from ra-
diative pion decays reported in Refs. [20, 21].
Through an analysis of inclusive and exclusive τ decays [24], it is possible to set constraints on the
other effective couplings in eq. (2.2). They get ε̂τ

S = (−0.6±1.5) ·10−2 and ε̂τ
T = (−0.04±0.46) ·

10−2 for the scalar and tensor couplings which are compatible with our results in this work and in
Ref. [7].
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6. Conclusions

Since the τ−→ π−π0ντ decays have the largest branching ratio, we can study these decays in
a model independent effective theory framework. Within this framework, we have set bounds on
ε̂S and ε̂T using the measured Belle branching ratio, through the observable ∆. This yields quite
competitive constraints with the world-best bounds for the tensor case, but quite poor in the scalar
case due to the isospin suppression factor (∆π−π0).
Accordingly to these results, the Dalitz plot distributions and the forward-backward asymmetry are
not very sensitive to non-vanishing realistic values of ε̂S and ε̂T . The hadronic invariant mass dis-
tribution is not sensitive to charged-current tensor interactions but a fit to the Belle spectrum shows
a slight preference for non-zero ε̂T . Hence, it is very worth to measure with extreme precision
the ππ invariant mass distribution in τ− → π−π0ντ decays at Belle-II in order to further restrict
ε̂T and provide complementary information to other low-energy decays searching for non-standard
interactions.
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A. Unpolarized spin-averaged squared amplitude

The scalar, vector, tensor and interference amplitude read

M0+ = 2CV CS m2
τ Re [F+(s)F∗0 (s)] ∆π−π0

(
1+

sε̂S

mτ(md−mu)

)
×
{

s
(
m2

τ − s−2t +Σπ−π0

)
−m2

τ∆π−π0

}
,

MT+ = 4CV ε̂T m3
τ sRe

[
FT (s)F∗+(s)

](
1− s

m2
τ

)
λ (s,m2

π− ,m
2
π0),

MT 0 = 4CS ∆π−π0 ε̂T mτ sRe [FT (s)F∗0 (s)]
(

1+
sε̂S

mτ(md−mu)

)
×
{

s
(
m2

τ − s−2t +Σπ−π0

)
−m2

τ∆π−π0

}
,

M00 =C2
S (∆π−π0)2 m4

τ

(
1− s

m2
τ

)
|F0(s)|2

(
1+

sε̂S

mτ(md−mu)

)2

,

M++ =C2
V |F+(s)|2

{
m4

τ (s−∆π−π0)2−m2
τs
[
s(s+4t)−2∆π−π0 (s+2t−Σπ−π0)+(∆π−π0)2

]
+4m2

π−s2 (m2
π0− t

)
+4s2t

(
s+ t−m2

π0

)}
,

MT T = 4ε̂
2
T |FT (s)|2s2

{
m4

π−
(
m2

τ − s
)
−2m2

π−
(
m2

τ − s
)(

s+2t−m2
π0

)
−m4

π0

(
3m2

τ + s
)

+2m2
π0

[(
s+m2

τ

)
(s+2t)−2m4

τ

]
− s
[
(s+2t)2−m2

τ (s+4t)
]}

,

(A.1)

where the familiar definitions ∆π−π0 = m2
π−−m2

π0 and Σπ−π0 = m2
π−+m2

π0 were employed.

B. Angular distribution

The decay distribution in the (s, cosθ) variables, for ε̂S and ε̂T is

d2Γ

d
√

sd cosθ
=

G2
F |Vud |2SEW

128π3mτ

(1+ εL + εR)
2
(

m2
τ

s
−1
)2

|~pπ− |
{

C2
S (∆π−π0)2 |F0(s)|2

×
(

1+
sε̂S

mτ(md−mu)

)2

+16|~pπ− |2s2
∣∣∣∣ CV

2mτ

F+(s)+ ε̂T FT (s)
∣∣∣∣2

+4|~pπ− |2s
(

1− s
m2

τ

)
cos2

θ
[
C2

V |F+(s)|2−4sε̂
2
T |FT (s)|2

]
−4CS∆π−π0 |~pπ− |

√
scosθ

×
(

1+
sε̂S

mτ(md−mu)

)[
CV Re

[
F0(s)F∗+(s)

]
+

2sε̂T

mτ

Re [FT (s)F∗0 (s)]
]}

,

(B.1)

which coincides with the SM result when ε̂S,T are set to zero.
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C. Decay rate

XVA =
1

2s2

[
3|F0(s)|2C2

S∆
2
π−π0 + |F+(s)|2C2

V

(
1+

2s
m2

τ

)
λ
(
s,m2

π0 ,m2
π−
)]

, (C.1a)

XS =
3

smτ

|F0(s)|2C2
S

∆2
π−π0

md−mu
, (C.1b)

XT =
6

smτ

Re
[
FT (s)F∗+(s)

]
CV λ

(
s,m2

π0 ,m2
π−
)
, (C.1c)

XS2 =
3

2m2
τ

|F0(s)|2C2
S

∆2
π−π0

(md−mu)
2 , (C.1d)

XT 2 =
4
s
|FT (s)|2

(
1+

s
2m2

τ

)
λ
(
s,m2

π0 ,m2
π−
)
. (C.1e)
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