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In this work we consider the most general analysis of τ → (Kπ)−ντ decays within an effective
field theory description of heavy new physics (NP) including SM operators up to dimension six
with massless neutrinos. All hadron form factors are built exploiting chiral symmetry, dispersion
relations and (lattice) data. Within this framework we:
i) confirm that it is impossible to understand the BaBar anomaly in the CP asymmetry measure-
ment (we find an upper bound for the NP contribution slightly larger than in Phys. Rev. Lett. 120
(2018) no.14, 141803, but still irrelevant compared to the experimental uncertainty by four orders
of magnitude approximately);
ii) first show that the anomalous bump measured in the Belle experiment for the KSπ− invariant
mass distribution at low energies is also impossible to understand in the presence of heavy NP;
iii) first bind the heavy NP effective couplings using τ−→ (Kπ)−ντ decays and show that they
are competitive with those found in hyperon semileptonic decays (but clearly not with those ob-
tained for non-standard scalar interactions in Kaon (semi)leptonic decays).
Finally to have a good control of potential new physics effects, we study carefully the SM contri-
bution, namely, we compare the SM predictions with possible deviations caused by NP in three
different observables: a couple of Dalitz plot distributions, in the forward-backward asymmetry
and in the di-meson invariant mass distribution.
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1. Introduction

This work is based in an article that we have published recently, for more details see ref. [1].
In this article we focus on the τ−→ (Kπ)−ντ decays, that we study within the SM and considering
the effects of heavy new physics (NP) on a number of phenomenologically interesting observables.
A clear motivation for this is the BaBar anomalous measurement of the CP asymmetry in the
KSπ− channel [2]. The CP violation present in the SM [3] is clearly insufficient to understand the
baryon asymmetry of the universe [4, 5, 6] so that any hint of NP involving CP violation becomes
a candidate for providing with a clue to understand the enormous matter-antimatter imbalance.
With respect to this BaBar anomaly, however, the related Belle measurement [7] of a binned CP
asymmetry in the same decay channel analyzing the decay angular distributions is compatible with
zero, as expected in the SM with a permille level precision. On the theoretical side, Ref. [8] proved
that heavy NP cannot explain this anomaly. We will also confirm this last statement.
Another motivation to do this this study is that three data points at the beginning of the KSπ− spectra
measured by Belle [9] have been excluded from the reference fits or signalled as controversial in
the dedicated analyses [10, 11, 12, 13, 15, 14, 16, 17] and are at odds with the prediction [18]. To
our knowledge, only Ref. [19] was able to describe these data points due to the effect on the scalar
form factor of the longitudinal correction to the K∗(892) propagator induced by flavor symmetry
breaking 1. We will study if it is possible to explain these conflicting data points by the most general
description of heavy NP contributions modifying the τ−→ ūsντ decays in the SM.
Finally, the third motivation to do this work is that semileptonic tau decays [20, 21, 22] have been
proved competitive with the traditional semileptonic decays involving light quarks [23, 24, 25,
26, 27, 28, 29, 30, 31, 32, 33], like nuclear beta or leptonic and radiative pion decays. In this
context, for the Cabibbo-suppressed sector, hyperon semileptonic decays [27, 30] cannot compete
with (semi)leptonic Kaon decays [29], given the (very accurately measured) dominant branching
fractions of the latter and the suppressed ones (at most at the permille level) of the former. This
intuitive reasoning suggests that strangeness-changing tau decays can also give non-trivial bounds
on non-standard charged current interactions, although it is not likely that a competitive level with
K`(2,3) decays. The present work will make these statements precise.
In ref. [34] one can see restrictions in the effective couplings in τ− → K−ντ decays which are
analogous and also complementary to the ones we will make here, both in the |∆S|= 1 sector.

2. Effective theory analysis of τ−→ ντ ūs

The lepton number conserving effective Lagrangian density constructed with dimension six
operators and invariant under the local SU(3)C⊗SU(2)L⊗U(1)Y SM gauge group has the follow-
ing form [35, 36],

L (e f f ) = LSM +
1

Λ2 ∑
i

αiOi −→LSM +
1
v2 ∑

i
α̂iOi , (2.1)

1As we will recall in section 4, the scalar form factor contribution that we employ [37] was obtained as a result of an-
alyzing strangeness-changing meson-meson scattering [38] within Chiral Perturbation Theory [39, 40] with resonances
[41, 42], accounting for the leading flavor symmetry breaking.
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with α̂i = (v2/Λ2)αi the dimensionless couplings encoding NP at a scale of some TeVs.
Upon integrating the heavy degrees of freedom out we can explicitly construct the low-scale
O(1GeV) effective lagrangian for semi-leptonic transitions as follows [23, 24]:

Lcc =−
GFVus√

2
(1+ εL + εR)

[
τ̄γµ(1− γ5)ν` · ū[γµ − (1−2ε̂R)γ

µ
γ5]s

+ τ̄(1− γ5)ν` · ū[ε̂s− ε̂pγ5]s+2ε̂T τ̄σµν(1− γ5)ν` · ūσ
µνs
]
+h.c. ,

(2.2)

where ε̂i = εi/(1+ εL + εR) [20] for i = R,S,P,T .

3. Semileptonic τ decay amplitude

In this section we calculate the decay amplitudes corresponding to the τ−→ K̄0π−ντ and the
τ−→ K−π0ντ decays. The first thing to note is that due to the parity of pseudoscalar mesons, only
the vector, scalar and tensor currents give a non-zero contribution to the decay amplitude, as shown
in the following equation 2 3

M =MV +MS +MT

=
GFVus

√
SEW√

2
(1+ εL + εR)[LµHµ + ε̂SLH +2ε̂T LµνHµν ] ,

(3.1)

where the leptonic currents have the following structure (p and p′ are the momenta of the tau
lepton and its neutrino, respectively),

Lµ = ū(p
′
)γµ(1− γ5)u(p) ,

L = ū(p
′
)(1+ γ5)u(p) ,

Lµν = ū(p
′
)σµν(1+ γ5)u(p) ,

(3.2)

and the vector, scalar and tensor hadronic matrix elements for the case of the τ−→ K̄0π−ντ decay,
are defined as follows

Hµ = 〈π−K̄0|s̄γ
µu|0〉= QµF+(s)+

∆Kπ

s
qµF0(s) , (3.3)

H = 〈π−K̄0|s̄u|0〉= FS(s) , (3.4)

Hµν = 〈π−K̄0|s̄σ
µνu|0〉= iFT (s)(pµ

K pν
π − pµ

π pν
K) , (3.5)

where qµ = (pπ + pK)
µ , Qµ = (pK− pπ)

µ− ∆Kπ

s qµ , s = q2, and ∆i j = m2
i −m2

j . The hadron matrix
elements H, Hµ and Hµν were decomposed in terms of the allowed Lorentz structures, taking into

2Eq.(3.1) displays clearly that the renormalization scale dependence of the Wilson coefficients ε̂i needs to be can-
celled by the one of the hadron matrix elements. As it is conventional, both are defined in the MS scheme at µ = 2
GeV.

3For convenience, the short-distance electroweak correction factor SEW [43, 44, 45, 46, 47, 48, 49, 50] is written as
an overall constant, although it only affects the SM contribution. The error of this simplification is negligible working
at leading order in the ε̂i coefficients [20, 21].
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account the discrete symmetries of the strong interactions, and a number of scalar functions of the
invariant mass of the Kπ system: the FS(s), F+(s), F0(s) and FT (s) form factors; which encode the
details of the hadronization procedure.
The τ−→ K−π0ντ decay is completely analogous. Neglecting (tiny) isospin corrections, the only
difference is given by the Clebsch-Gordan flavor symmetry factor of

√
2 between both decay chan-

nels, that is
√

2FK−π0

0,+,T (s) = F K̄0π−
0,+,T (s).

From equations (3.2) one can easily see that the vector and the scalar currents are related through
the Dirac equation in the following way

L =
Lµqµ

Mτ

. (3.6)

Similarly, one can find a relation between the vector and the scalar hadronic matrix elements by
taking the four-divergence of equation (3.3). This yields

FS(s) =
∆Kπ

ms−mu
F0(s) . (3.7)

Taking into account the previous two equations, we conclude that the scalar and vector contribu-
tions in eq.(3.1) can be treated jointly by doing the convenient replacement

∆Kπ

s
→ ∆Kπ

s

[
1+

sε̂s

Mτ(ms−mu)

]
. (3.8)

4. Hadronization of the scalar, vector and tensor currents

The form factors encode the details of the hadronization process and are extremely important to
have a good control of the SM and in consequence to constrain the non-standard interactions. These
are constructed exploiting chiral symmetry, dispersion relations and lattice data when needed.
The scalar and the vector form factors have been studied extensively, here we benefit from previous
works for both of them. The vector form factor is taken from ref. [12] and the scalar form factor
is taken from ref. [51]. Here we focus in the analysis of the tensor form factor which is the new
ingredient in this work, the normalization of the tensor form factor at zero-momentum-transfer is
obtained using Chiral Perturbation Theory with tensor sources [52] and Lattice data [53];

i〈π−K̄0| δL

δ t̄αβ

|0〉= Λ2

F2

(
pα

K pβ

0 − pα
0 pβ

K

)
. (4.1)

The energy-dependence of the tensor form factor FT (s) is calculated using a phase dispersive rep-
resentation as it is shown in refs. [8] and [21];

FT (s)
FT (0)

= exp

[
s
π

∫
∞

sπK

ds
′ δT (s

′
)

s′(s′− s− iε)

]
, (4.2)

where sπK = (mK̄0 +mπ−)
2. As in the scalar case we have included one subtraction. In this case it is

clear, that lacking precise low-energy information, we cannot increase the number of subtractions
of FT (s). This, in turn, implies a sizable sensitivity to the upper limit of the integral that is used

3
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numerically (scut), which is illustrated in our figure 1, where we consider the cases scut = M2
τ ,4,9

GeV2 [21] 4. We take the differences between these curves as an estimate of our systematic the-
oretical error on FT (s)/FT (0). In the right panel of fig. 1 we show the tensor form factor phase
corresponding to δT (s) = δ+(s), with δ+(s) from the fits in table 1 of Ref. [13]. In the inelastic
region, our curve plotted for δT (s) lies within the error band shown in figure 2 of Ref. [8] 5.

Figure 1: Modulus and phase, |FT (s)| (left) and δT (s) = δ+(s) (right), of the tensor form factor,
FT (s). On the left plot, the dotted line corresponds to scut = 9 GeV2, the dashed one to scut = 4
GeV2, and the solid one to scut = M2

τ .

5. Decay observables

In the rest frame of the τ lepton, the doubly differential decay width for the τ− → KSπ−ντ

process is
d2Γ

dsdt
=

1
32(2π)3M3

τ

|M |2 , (5.1)

where |M |2 is given by eq. (5.3), s is the invariant mass of the π−KS system taking values in the
(mK0 +mπ−)

2 ≤ s≤M2
τ interval, and

t±(s) =
1
2s

[
2s(M2

τ +m2
K0− s)−

(
M2

τ − s
)(

s+m2
π−−m2

K0

)
±
(
M2

τ − s
)√

λ (s,m2
π− ,m

2
K0)

]
, (5.2)

with λ (x,y,z) = x2 + y2 + z2−2xy−2xz−2yz being the usual Källen function and t = (Pτ − pπ)
2.

5.1 Dalitz plots

The unpolarized spin-averaged squared amplitude is given as follows:

|M |2 = G2
F |Vus|2SEW (1+ εL + εR)

2(M0++MT++MT 0 +M00 +M+++MT T ) . (5.3)

In the left panel of figure 2 we show the Dalitz plot for the SM case in the (s, t) variables, which is
just eq. (5.3) with ε̂S and ε̂T turned off.

4In principle, one could try to reduce this sensitivity following the strategies employed in Ref. [54], but the proce-
dure will again be limited in this case by the absence of measurements sensitive to FT (s).

5Our phase is given in degrees while theirs is in radians.
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When we take into account NP effects in the Dalitz plots, it is convenient to define the following
observable introduced in Ref. [21]

∆̃(ε̂S, ε̂T ) =

∣∣∣|M (ε̂S, ε̂T )|2−|M (0,0)|2
∣∣∣

|M (0,0)|2
, (5.4)

which is sensitive to the relative difference between the squared matrix element in presence/absence
of NP contributions (the SM case corresponds to M (0,0)).
In the left part of figures 3 and 4 we show the corresponding plots for the values (ε̂S =−0.5, ε̂T = 0)
and (ε̂S = 0, ε̂T = 0.6), respectively. The election of these particular values of the ε̂S,T is discussed
in section 5.5.

0

2. ×10-10

4. ×10-10

6. ×10-10

0

5.0 ×10-11

1.0 ×10-10

1.5 ×10-10

2.0 ×10-10

Figure 2: Dalitz plot distribution |M |200 in the SM, eq. (5.3): Differential decay distribution
for τ−→ KSπ−ντ in the (s, t) variables (left). The right-hand figure shows the differential decay
distribution in the (s,cosθ) variables, eq. (5.5). The Mandelstam variables, s and t, are normalized
to M2

τ .

In the SM plots (figure 2) it is clearly appreciated that the dynamics is dominated by the
K∗(892) vector resonance but the effect of its excitation K∗(1410) and of the dynamically generated
K∗0 (700) [55], of the K∗0 (1430) and heavier states cannot be appreciated from the figure, although
it is visible both in F+(s) and the decay spectrum [12] and in F0(s) [51], respectively. The left
panel of figures 3 and 4 shows the relative modification of the squared matrix element for non-zero
reasonable values of ε̂S and ε̂T in the (s, t) plane. Although large variations are seen in a couple
of regions close to the border of the Dalitz plot in figure 3 (left), these correspond to zones with
very suppressed probability, as can be seen in figure 2 (left). On the contrary, the regions with
larger probability have a small relative change, according to figure 3 (left). In figure 4 (left) the
region with the most noticeable change (though still smaller than those seen in figure 3) is located
very close to the s minimum of the Dalitz plot, which has very small probability density in figure 2
(left). This region quite overlaps with one of the two mentioned for the fig. 3 left plot. Because of
this feature, observing a deviation from the SM result in this region could be due to both tensor and
non-standard scalar interactions. On the contrary, a deviation in the region of small t values would
be signalling spin-zero NP contribution. In any case, changes are very small in the region most

5
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densely populated by measured events in both left plots of figs. 3 and 4. Due to this, we conclude
that it will be extremely challenging to identify NP contributions in the (s, t) Dalitz plot even with
the large data samples accumulated by the end of operation of Belle-II [56].

0

2

4

6

8

0

5

10

15

Figure 3: Dalitz plot distribution ∆̃(ε̂S, ε̂T ), eq. (5.4), in the τ−→ KSπ−ντ decays: left-hand side
corresponds to eq. (5.3) and the right-hand side corresponds to the differential decay distribution
in the (s,cosθ) variables, eq. (5.5), both with (ε̂S = −0.5, ε̂T = 0). The Mandelstam variables, s
and t, are normalized to M2

τ .

0

0.25

0.50

0.75

1.00

1.25

0

0.5

1.0

1.5

Figure 4: Dalitz plot distribution ∆̃(ε̂S, ε̂T ), eq. (5.4), in the τ−→ KSπ−ντ decays: left-hand side
corresponds to eq. (5.3) and the right-hand side corresponds to the differential decay distribution
in the (s,cosθ) variables, eq. (5.5), both with (ε̂S = 0, ε̂T = 0.6). The Mandelstam variables, s and
t, are normalized to M2

τ .

5.2 Angular distribution

In this section we are going to study the angular dependence of the decay distribution. It
is convenient to work in the rest frame of the hadronic system, in which we have ~pπ + ~pK =

~pτ −~pν =~0, consequently the tau lepton and the pion energies are given by Eτ = (s+M2
τ )/(2

√
s)

6
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and Eπ = (s+m2
π −m2

K)/(2
√

s).
We will study the decay distribution in terms of the (s,cosθ ) variables, where θ is the angle between
the three-momenta of the pion and the three-momenta of the tau lepton, this angle is related to
the invariant t variable by t = M2

τ +m2
π − 2EτEπ + 2|~pπ ||~pτ |cosθ , where |~pπ | =

√
E2

π −m2
π and

|~pτ |=
√

E2
τ −M2

τ
6.

Changing variables to (s, cosθ ) in eq. (5.1) we obtain the following:

d2Γ

d
√

sdcosθ
=

G2
F |Vus|2SEW

128π3Mτ

(1+ εL + εR)
2
(

M2
τ

s
−1
)2

|~pπ− |

{
∆

2
πK |F0(s)|2

×
(

1+
sε̂S

Mτ(ms−mu)

)2

+16|~pπ− |2s2
∣∣∣∣−F+(s)

2Mτ

+ ε̂T FT (s)
∣∣∣∣2

+4|~pπ− |2s
(

1− s
M2

τ

)
cos2

θ
[
|F+(s)|2−4sε̂

2
T |FT (s)|2

]
+4∆πK |~pπ− |

√
scosθ

×
(

1+
sε̂S

Mτ(ms−mu)

)[
−Re

[
F0(s)F∗+(s)

]
+

2sε̂T

Mτ

Re [FT (s)F∗0 (s)]
]}

. (5.5)

The Dalitz plots for the (s,cosθ) variables are shown on the right panels of figures 2, 3 and 4 (in
these last two the observable ∆̃(ε̂S, ε̂T ) is plotted). On figure 2 we plot the SM case, and in figures 3
and 4 we show Dalitz plots for the values (ε̂S =−0.5, ε̂T = 0) and (ε̂S = 0, ε̂T = 0.6), respectively.
The SM plot gives equivalent information in the (s,cosθ) variables as the one seen in the (s, t)
variables (right versus left plot of figure 2). Comparing both panels of figs. 3 one can see that
one of the enhanced regions in the (s, t) plot (the one at very low s values) is washed away in the
(s,cosθ) diagram, while the other is slightly further enhanced in a limited region (0≤ cosθ ≤ 0.5).
The comparison of the left and right plots of figure 4 shows that the enhanced area for large t values
is a bit more prominent in the (s,cosθ) distribution (for nearly maximal cosθ ) although again it
will be very hard to disentangle these possible deviations from the SM patterns in near future data.
Assuming approximate lepton universality, using the bounds from Ref. [29] (obtained analyzing
Kaon (semi)leptonic decays) ε̂S ∼ −8× 10−4, ε̂T ∼ 6× 10−3 (maximum allowed absolute values
at one standard deviation) minimizes the deviations from the SM to unobservable level both in the
(s, t) and (s,cosθ) Dalitz plots.

5.3 Decay rate

Integrating eq. (5.1) upon the t variable we obtain the invariant mass distribution as follows

dΓ

ds
=

G2
F |Vus|2M3

τ SEW

384π3s
(1+ εL + εR)

2
(

1− s
M2

τ

)2

λ
1/2(s,m2

π ,m
2
K)

× [XVA + ε̂SXS + ε̂T XT + ε̂
2
S XS2 + ε̂

2
T XT 2 ] ,

(5.6)

6The tau lifetime and decay width (ττ and Γτ , respectively) are defined in the τ rest frame. Consequently, their
values are boosted in the reference frame considered in this subsection.

7
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where

XVA =
1

2s2

[
3|F0(s)|2∆

2
Kπ + |F+(s)|2

(
1+

2s
M2

τ

)
λ (s,m2

π ,m
2
K)

]
, (5.7a)

XS =
3

sMτ

|F0(s)|2
∆2

Kπ

ms−md
, (5.7b)

XT =
6

sMτ

Re[FT (s)F∗+(s)]λ (s,m
2
π ,m

2
K) , (5.7c)

XS2 =
3

2M2
τ

|F0(s)|2
∆2

Kπ

(ms−mu)2 , (5.7d)

XT 2 =
4
s
|FT (s)|2

(
1+

s
2M2

τ

)
λ (s,m2

π ,m
2
K) . (5.7e)

Note from the previous equations that the only possible source of CP violation coming from the
hadronic part is due to the Vector-Tensor interference, we will comment about this in section 6.
In figure 5, we plot the invariant mass distribution of the Kπ system for τ−→ KSπ−ντ decays for
the SM case and for (ε̂S = −0.5, ε̂T = 0) and (ε̂S = 0, ε̂T = 0.6) which would be realistic values
for these couplings, according to their impact on the decay width. Despite the logarithmic scale of
the plot, the deviations from the SM curve shown in figure 5 are too large when they are confronted
with the Belle measurements of this spectrum, as we will see in the fits of section 5.5. This will
allow us to set better bounds on ε̂S,T than those used in this subsection.

Figure 5: The K̄0π− hadronic invariant mass distribution for the SM (solid line) and ε̂S = −0.5,
ε̂T = 0 (dashed line) and ε̂S = 0, ε̂T = 0.6 (dotted line). The decay distributions are normalized to
the tau decay width.

8
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5.4 Forward-backward asymmetry

The forward-backward asymmetry is defined in analogy to the di-pion mode [21]

AKπ(s) =

∫ 1
0 dcosθ

d2Γ

dsdcosθ
−
∫ 0
−1 dcosθ

d2Γ

dsdcosθ∫ 1
0 dcosθ

d2Γ

dsdcosθ
+
∫ 0
−1 dcosθ

d2Γ

dsdcosθ

. (5.8)

Substituting eq. (5.5) into eq. (5.8) and integrating upon the cosθ variable we obtain its analytical
expression 7

AKπ =
3
√

λ (s,m2
π ,m2

K)

2s2[XVA + ε̂SXS + ε̂T XT + ε̂2
S XS2 + ε̂2

T XT 2 ]

(
1+

sε̂S

Mτ(ms−mu)

)
∆πK

×
[
−Re[F0(s)F∗+(s)]+

2sε̂T

Mτ

Re[FT (s)F∗0 (s)]
]
.

(5.9)

The forward-backward asymmetry for the case in which εR = εL = ε̂S = ε̂T = 0, corresponding to
the SM, is plotted in figure 6. It should not be difficult to measure a non-zero forward-backward
asymmetry around

√
s ∼ 0.6 GeV. Above the onset of inelasticities (

√
s & 1.05 GeV) the theory

uncertainty starts to increase up to the kinematical upper limit of
√

s. It was already emphasized
long ago that a measurement of the forward-backward asymmetry in this decay channel would be
crucial in improving our knowledge of both vector and scalar form factors [57] 8.
In figure 7, we plot AKπ for the values (ε̂S =−0.5, ε̂T = 0) and (ε̂S = 0, ε̂T = 0.6), and we compare
those plots with the SM case. For quite large ε̂T values some difference is appreciated for the
tensor case; otherwise it may not be possible to disentangle it from the standard contribution. On
the contrary, for non-standard scalar interaction, AKπ flips sign with respect to the SM and it gets
smaller in magnitude as s increases. If it is possible to measure AKπ in a low-energy bin, this
would ease the identification of this type of NP in AKπ . When the more realistic limits obtained in
Ref. [29] are considered (under the assumption of approximate lepton universality), it is impossible
to identify any departures from the SM prediction in this observable. For this reason, we follow
Ref. [21] and use

∆AKπ = AKπ(s, ε̂S, ε̂T )−AKπ(s,0,0) , (5.10)

instead. The corresponding (unmeasurably small) deviations from the SM result are plotted in
figure 8.

5.5 Limits on ε̂S and ε̂T

One of the main purposes in the search for NP using the channel τ− → K̄0π−ντ is to set
bounds on the couplings ε̂S and ε̂T , which are the effective couplings responsible of NP effects in
this case. For this task we compare the decay width (Γ) for non-vanishing NP effective couplings
with respect to the SM width (Γ0) where NP is absent. We take the observable ∆ defined in the

7In eq. (5.9) we use AKπ to emphasize the decay channel under consideration and compare it next to our previous
result for the ππ decay mode. Otherwise we will also be using the most common notation AFB for this observable.

8We note that in this reference, and also later on in Refs. [58, 14], the angle θ used to compute AFB is defined
between the three-momenta of the tau lepton and the KS in the di-meson rest frame. Taking into account the different
sign conventions, it can be checked there is reasonable agreement with these works in the elastic region.
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Figure 6: Forward-backward asymmetry in τ−→ KSπ−ντ decays for the SM case.

Figure 7: Forward-backward asymmetry in τ−→KSπ−ντ decays compared with the SM prediction
(solid line). The dashed line corresponds to ε̂S =−0.5, ε̂T = 0, and the dotted line corresponds to
ε̂S = 0, ε̂T = 0.6.

Figure 8: Deviations from the SM forward-backward asymmetry, ∆AKπ , in τ−→ KSπ−ντ decays
using the bounds from Ref. [29]. The solid line corresponds to ε̂S = −8× 10−4, ε̂T = 0 and the
dashed line to ε̂S = 0, ε̂T = 6×10−3.
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following equation as the appropriate one to enhance the sensitivity to non-vanishing values of ε̂S

and ε̂T .

∆≡ Γ−Γ0

Γ0 = αε̂S +β ε̂T + γε̂
2
S +δ ε̂

2
T , (5.11)

where we obtained the following results for the coefficients: α ∈ [0.30,0.34], β ∈ [−2.92,−2.35],
γ ∈ [0.95,1.13] and δ ∈ [3.57,5.45]. The values for ε̂S and ε̂T are calculated from eq. (5.11) in two
different ways, as it is done in Refs. [20, 21]. First we set one of the couplings to zero obtaining
bounds for the other, these results are shown in figure 9.

Figure 9: ∆ as a function of ε̂S for ε̂T = 0 (left hand) and of ε̂T for ε̂S = 0 (right hand) for
τ− → KSπ−ντ decays. Horizontal lines represent the values of ∆ according to the current mea-
surement and theory errors (at three standard deviations) of the branching ratio (dashed line) and
in the hypothetical case where the measured branching ratio at Belle-II has a three times reduced
uncertainty (dotted line).

Then, we also obtained constrains for ε̂S and ε̂T in the general case where both are non-
vanishing. We show these results in figure 10, where the bounds on both couplings are limited
by an ellipse in the ε̂S-ε̂T plane.
The information for the couplings obtained here was used in the previous subsections, where we
took the values ε̂S ∼−0.5 and ε̂T ∼ 0.6 as representative of realistic maximum absolute values of
these coefficients when only the branching ratio (and not the decay spectrum) is considered.
Our results for the bounds in the ε̂S and ε̂T couplings are summarized in the following table.

∆ limits ε̂S(ε̂T = 0) ε̂T (ε̂S = 0) ε̂S ε̂T

Current bounds [−0.57,0.27] [−0.059,0.052]∪ [0.60,0.72] [−0.89,0.58] [−0.07,0.72]
Future bounds [−0.52,0.22] [−0.047,0.036]∪ [0.62,0.71] [−0.87,0.56] [−0.06,0.71]

Table 1: Constraints on the scalar and tensor couplings obtained through the limits on the current
branching ratio at three standard deviations using the current theory and experimental errors and
assuming the latter be reduced to a third (’Future bounds’). This last case should be taken only
as illustrative of the improvement that can be achieved thanks to higher-statistics measurements,
even in absence of any progress on the theory side. It is clear that the knowledge of ε̂S,T using
τ−→ KSπ−ντ decays data is limited by theory uncertainties.
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Figure 10: Constraints on the scalar and tensor couplings obtained from ∆(τ− → KSπ−ντ) us-
ing theory and the measured value reported in the PDG, with their corresponding uncertainties at
three standard deviations (solid line). The dashed line ellipse corresponds to the case where the
measurements error was reduced to a third of the current uncertainty.

Next we will consider fits to the branching ratio and decay spectrum 9 of the τ−→ KSπ−ντ

decays as measured by Belle [9]. We will pay special attention to the possible explanation of
the conflicting data points (bins 5, 6 and 7) by the non-standard interactions. Therefore, we will
consider fits with and without these data points. In all our fits, as explained e. g. in Ref. [17], we
will not consider the first data point (as it lies below the threshold for physical KS and π− masses)
and will disregard the data from the last 10 bins, as suggested by the Belle collaboration.
The χ2 function minimized in our fits is

∑
i

(
Ni

exp−N th
i

σNi

)2

+

(
BRexp−BRth

σ
exp
BR

)2

, (5.12)

where the sum over the i bins may or may not include the i = 5,6,7 bins. Our expression for the
differential decay rate (5.6) (whose integration yields BRth×Γτ ) is related to the distribution of the
measured number of events as indicated in eq. (3.1) of Ref. [17] and in the subsequent explanation.
We will consider the measurement of BRexp reported in the Belle paper [9] (and not the PDG [59] or
the HFLAV [60] values), as discussed in Ref. [17]. Along our fits we float the meson form factors
within their estimated uncertainty bands and our quoted results take these errors into account.
We summarize our main results in the following table.

9P. R. thanks Denis Epifanov for providing him with these data.
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Best fit values ε̂S ε̂T χ2 χ2 in the SM
Excluding i = 5,6,7 bins (1.3±0.9)×10−2 (0.7±1.0)×10−2 [72,73] [74,77]
Including i = 5,6,7 bins (0.9±1.0)×10−2 (1.7±1.7)×10−2 [83,86] [91,95]

Table 2: Best fit values to the Belle spectrum and branching ratio of the τ−→ KSπ−ντ decays [9].
The cases where the i = 5,6,7 bins are excluded/included are considered. We display the reference
results obtained floating ε̂S and ε̂T simultaneously. In the last two columns the χ2 of these fits is
compared to the SM result.

In view of these results it is clear that the narrow peak structure constituted by the i = 5,6,7 bins
cannot be understood either in the SM (with a dispersive scalar form factor coming from the S-wave
of a coupled channels analysis of meson-meson scattering [38]) [18, 10, 11, 12, 13, 15, 14, 16, 17]
or in the EFT analysis considered in this work. This conclusion agrees with the later preliminary
data of BaBar [62] and a Belle posterior measurement [63], where such a bump near threshold is
absent.
Our results ε̂S = (1.6±0.9)×10−2 and ε̂T = (0.9±1.0)×10−2 translate into bounds on the cor-
responding NP scale Λ ∼ 2− 5 TeV 10, assuming effective couplings of natural value at µ = Λ

and accounting for the running of these coefficients on the renormalization scale µ [61, 25]. These
results are, of course, modest compared to the NP reach of (semi)leptonic Kaon decays, which can
probe related scales as high as O(500) TeV [29] for non-standard scalar interactions.

6. CP violation

The observable ACP, measured by BaBar [2] at odds with the SM prediction (tiny corrections
from direct CP violation are neglected along this section), is defined as

ACP =
Γ(τ+→ π+KSν̄τ)−Γ(τ−→ π−KSντ)

Γ(τ+→ π+KSν̄τ)+Γ(τ−→ π−KSντ)
. (6.1)

In the SM, ACP is saturated by the neutral kaon mixing contribution. Because of that, it is given by
the analogous asymmetry measured in semileptonic kaon decays [8] (`= e, µ)

Γ(KL→ π−`+ν`)−Γ(KL→ π+`−ν̄`)

Γ(KL→ π−`+ν`)+Γ(KL→ π+`−ν̄`)
= 3.32(6)×10−3 , (6.2)

up to small corrections given by the fact that the KS is reconstructed at the B-factories through
its two-prong pion decay mode with a decay time of the order of the KS lifetime, which modify
the previous value to ASM

CP = 3.6(1)×10−3 [64], that is 2.8 σ away from the BaBar measurement,
ACP =−3.6(2.3)(1.1)×10−3.
In Ref. [65] it is shown that -in the presence of beyond the SM (BSM) interactions- ACP is modified
to

ACP =
ASM

CP +ABSM
CP

1+ASM
CP ×ABSM

CP
, (6.3)

10Explicitly, Λ∼ v(Vusε̂S,T )
−1/2, with v = (

√
2GF )

−1/2 ∼ 246 GeV.
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where, in our case [8] 11

ABSM
CP =

2sinδW
T |ε̂T |G2

F |Vus|2SEW

256π3M2
τ Γ(τ → KSπντ)

∫ M2
τ

sπK

ds| f+(s)||FT (s)|sin(δ+(s)−δT (s))
λ 3/2(s,m2

π ,m
2
K)(M

2
τ − s)2

s2 ,

(6.4)
where δW

T stands for the relative weak phase between the SM V-A and the tensor contributions. In
Ref. [8], using SU(2)L invariance of the weak interactions and the EFT machinery, poses stringent
constraints on ℑm[ε̂T ] by exploiting the measurements of D− D̄ mixing and the upper limit on the
electric dipole moment of the neutron. This results in the bound 2ℑm[ε̂T ]. 10−5, that we will use.
To see that δW

T is a small parameter, we remind the limits from the global EFT analysis of NP in
Kaon (semi)leptonic decays [29], according to which |εT |= (0.5±5.2)×10−3. Considering this,
sinδW

T |ε̂T | ∼ ℑm[ε̂T ] and the numerical evaluation of eq. (6.4) is straightforward with the inputs at
hand.
We have computed eq. (6.4) using |FT (s)| obtained with scut = M2

τ ,4,9 GeV2 (shown in the left
panel of fig. 1) and with δT (s) varying (smoothly) within the band shown in fig. 2 of Ref. [8].
The errors on |F+(s)| and δ+(s) are negligible compared to the uncertainties on FT (s). Among
these two types of uncertainties, the error on δT (s) dominates completely: changing scut for a given
δT (s) can modify ABSM

CP by a factor three, at most; while, with a fixed scut , ABSM
CP can be vanishing

for δT (s)→ δ+(s) also in the inelastic region. In this way, we find

ABSM
CP . 8 ·10−7 , (6.5)

which is slightly weaker bound than the one reported in Ref. [8]: ABSM
CP . 3 ·10−7. This small dif-

ference comes from our accounting for the variation in scut and for the fact that our phase δ+(s) has
a non-trivial energy-dependence (as shown in the right plot of our fig. 1) as compared to the central
curve for δ+(s) in Ref. [8], corresponding to a Breit-Wigner approximation for the K∗(892) 12. In
any case, it is clear that heavy BSM interactions can only modify ACP at the 10−6 level at most,
which is at least three orders of magnitude smaller than the theoretical uncertainty in its prediction
(which is, in turn, some 25 times smaller than the error of the BaBar measurement). Therefore, any
conclusive anomaly in ACP must be explained outside the framework considered in this paper (and
in Ref. [8]); for instance, by BSM effects of very light particles.

7. Conclusions

We arrived at the following three conclusions:

• In agreement with Ref. [8], we confirm that it is not possible to understand within the low-
energy limit of the SMEFT framework the BaBar measurement [2] of the CP asymmetry,
which disagrees at 2.8σ with the SM prediction [64]. As a consequence of our dedicated
treatment of the uncertainties on the tensor form factor, we find an slightly weaker bound than

11We recall that cT in this reference equals 2ε̂T in our notation.
12As a consistency check, we reproduce the bound ABSM

CP . 3 ·10−7 [8] using δ+(s) corresponding to the middle of
the band shown for δ+(s) in figure 2 of the quoted reference.
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in Ref. [8], ABSM
CP . 8 ·10−7, which is anyway some three (five) orders of magnitude smaller

than the theoretical uncertainty in its prediction (the error of the BaBar measurement). If the
BaBar anomaly is confirmed, its explanation must be due to light NP. A determination of this
quantity with Belle-I data, together with the future measurement at Belle-II [56], will shed
light on this puzzle.

• The bins number 5, 6 and 7 of the Belle measurement [9] of the KSπ− mass spectrum in τ−→
KSπ−ντ decays could not find an explanation using a scalar form factor obtained from the
corresponding partial-wave of a meson-meson scattering coupled channels analysis [38, 11]
13. We have shown here, for the first time, that non-standard scalar or tensor interactions
produced by heavy NP are not capable of explaining these data points either. Again a caveat
remains with respect to light NP effects, which are beyond the scope of this paper.

• Current branching ratio and spectrum measurements of the τ−→ KSπ−ντ decays restrict the
NP effective couplings, εS and εT , as we have studied in this work for the first time. Our re-
sults are consistent with naive expectations: while the considered decays set bounds similar
to those coming from hyperon semileptonic decays (which are at the level of a few TeV NP
energy scale under reasonable assumptions), they are not competitive with (semi)leptonic
Kaon decays, that could probe O(500) TeV NP generating non-standard scalar interactions.
However, we put forward that tensor interactions are probed in τ−→ (Kπ)−ντ decays with
similar NP energy reach than in (semi)leptonic Kaon and hyperon decays. Therefore, the
corresponding comparisons for εT are meaningful tests of lepton universality and under this
assumption tau decays can complement Kaon and hyperon physics in restricting tensor in-
teractions.
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