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1. Introduction

The Standard Model (SM) provides a very successful description of flavour-changing tran-
sitions in terms of the nine charged-fermion masses and the four CKM quark-mixing parameters
(plus the analogous neutrino masses and mixings, when they are incorporated). However, a more
fundamental understanding of flavour is still lacking. Obviously, any observed deviations from
the SM predictions trigger a lot of interest as they could provide the missing hints to uncover the
underlying flavour dynamics.

Many flavour-related ‘anomalies’ have been reported along the years: W → τν , τ → πKSν ,
b→ cτν , b→ sµ+µ−, (g− 2)µ,e, ε ′K/εK (K0 → ππ), εK , ∆ACP (D0 → K+K−/π+π−), Vcd , Vub,
Vud , B→ τν , . . . While some of them could indeed be true signals of new phenomena, others may
just originate from statistical fluctuations, underestimated systematics or even a deficient SM pre-
diction or measurement. For instance, the long-term discrepancy between exclusive and inclusive
determinations of Vcd seems nowadays close to get solved through a more careful treatment of form
factor parameters and data extrapolations [1, 2, 3, 4, 5, 6, 7]. The resulting (slightly larger) value of
Vcd would also eliminate the suggested tensions in εK , while the claimed anomaly in ε ′K/εK results
from a poor theoretical treatment of the final-state ππ dynamics [8].

In fact, an easy common explanation for all anomalies does not exist, within appealing mod-
els of new physics (NP). Model builders just choose two or three anomalies, according to their
preferences, in order to fit them together within the same theoretical framework. In this situation,
separate analyses of the different observables are perhaps more enlightening. In the following, I
will focus on those topics where there has been more activity during the last two years.

2. The kaon CP-violating ratio ε ′K/εK

A tiny difference between the CP-violating ratios ηnm ≡M [K0
L → πnπm]/M [K0

S → πnπm]≈
εK ≈ 2.2×10−3 eiπ/4, where nm =+−,00 denote the final pion charges, was first measured by the
CERN NA31 experiment [9] and later confirmed at the 7.2σ level with the full data samples of
NA31, NA48 and the Fermilab experiments E731 and KTeV [10]:

Re(ε ′K/εK) =
1
3

(
1−
∣∣∣∣ η00

η+−

∣∣∣∣2
)

= (16.6±2.3)×10−4 . (2.1)

This important measurement established the presence of direct CP violation in the decay ampli-
tudes, confirming that CP violation is associated with a ∆S = 1 transition as predicted by the CKM
mechanism.

The first next-to-leading-order theoretical predictions gave values of ε ′K/εK one order of mag-
nitude smaller than (2.1), but it was soon realised that they were missing the important role of
the final pion dynamics [11, 12, 13]. Once long-distance contributions are properly taken into ac-
count, the theoretical SM prediction turns out to be in good agreement with the experimental value,
although the uncertainties are unfortunately large [8, 14]:

Re(ε ′K/εK)SM = (14±5)×10−4 . (2.2)
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The underlying physics can be easily understood from the kaon data themselves. Owing to
Bose symmetry, the two pions in the final state must be in a I = 0 or I = 2 configuration. In
the absence of QCD corrections, the corresponding K → ππ decay amplitudes AI ≡ AI eiδI are
predicted to differ only by a

√
2 factor. However, their measured ratio is 16 times larger than that

(a truly spectacular enhancement generated by the strong forces):

ω ≡ Re(A2)/Re(A0)≈ 1/22 , δ0−δ2 ≈ 45◦ . (2.3)

Moreover, they exhibit a huge phase-shift difference that manifests the relevance of final-state in-
teractions and, therefore, the presence of large absorptive contributions to the K→ ππ amplitudes,
specially to the isoscalar one. Writing AI = Dis(AI)+ iAbs(AI) and neglecting the small CP-odd
components, the measured ππ scattering phase shifts at

√
s = mK imply that

Abs(A0)/Dis(A0)≈ 0.82 , Abs(A2)/Dis(A2)≈−0.15 . (2.4)

The direct CP-violating effect involves the interference between the two isospin amplitudes,

Re(ε ′K/εK) = −
ω√

2 |εK |

[
ImA0

ReA0
− ImA2

ReA2

]
= − ω+√

2 |εK |

[
ImA(0)

0

ReA(0)
0

(1−Ωeff)−
ImAemp

2

ReA(0)
2

]
. (2.5)

It is suppressed by the small ratio ω and, moreover, it is very sensitive to isospin-breaking (IB)
corrections [15, 16, 17], parametrized by Ωeff = 0.11±0.09 [14], because small IB corrections to
A0 feed into the small amplitude A2 enhanced by the large factor 1/ω . In the right-hand side of
Eq. (2.5), the (0) superscript indicates the isospin limit, ω+ = Re(A+

2 )/Re(A0) is directly extracted
from K+→ π+π0 and Aemp

2 contains the electromagnetic-penguin contribution to A2 (the remaining
contributions are included in Ωeff).

Claims for small SM values of ε ′K/εK usually originate from perturbative calculations that are
unable to generate the physical phase shifts, i.e., they predict δI = 0 and, therefore, Abs(AI) = 0,
failing completely to understand the empirical ratios (2.4). This unitarity pitfall implies also in-
correct predictions for the dispersive components, since they are related by analyticity with the
absorptive parts: a large absorptive contribution generates a large dispersive correction that is ob-
viously missed in those calculations. This perturbative problem is more severe in ε ′K/εK because
Eq. (2.5) involves a delicate numerical balance among the three contributing terms, and naive pre-
dictions sit precisely on a nearly-exact cancellation (a 40% positive correction to the first term
enhances the whole result by one order of magnitude).

The ε ′K/εK anomaly was recently resurrected by the lattice RBC-UKQCD collaboration that
reported Re(ε ′K/εK) = (1.38± 5.15± 4.59)× 10−4 [18, 19]. The uncertainties are still large, but
the quite low central value implies a 2.1σ deviation from the experimental measurement. This has
triggered a revival of the old naive estimates [20, 21], some of them making also use of the lattice
data [22, 23], and a large amount of NP explanations (a list of references is given in Refs. [8, 14]).
However, it is premature to derive physics implications from the current lattice simulations, since
they are still unable to reproduce the known phase shifts. While the lattice determination of δ2 is
only 1σ away from its physical value, δ0 disagrees with the experimental result by 2.9σ , a much
larger discrepancy that the one quoted for ε ′K/εK . Obviously, nobody suggests a NP contribution
to the ππ elastic scattering phase shifts. The RBC-UKQCD collaboration is actively working in
order to improve the present situation.
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3. Direct CP violation in charm

The first observation of CP violation in decays of charm hadrons has been recently reported
by the LHCb collaboration, which has measured the difference between the CP asymmetries in
D0→ K+K− and D0→ π+π− [24]:

∆ACP ≡ ACP(K+K−)−ACP(π
+

π
−) = (−15.4±2.9)×10−4 , (3.1)

where ACP( f ) ≡ [Γ(D0 → f )− Γ(D̄0 → f )]/[Γ(D0 → f ) + Γ(D̄0 → f )]. The measured time-
integrated asymmetries can be decomposed in a direct contribution adir

CP( f ) from CP violation
in the decay amplitude and another component associated to CP violation either in D0-D̄0 mix-
ing or in the interference between mixing and decay. These two contributions can be disen-
tangled through measurements of the time-decay distribution of the data sample. The LHCb
analysis concludes that, as expected, the CP signal comes primarily from direct CP violation:
∆adir

CP = (−15.7±2.9)×10−4 [24]. The HFLAV combination with previous measurements, shown
in Figure 1, gives [25]

∆adir
CP = (−16.4±2.8)×10−4 . (3.2)
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Figure 1: World data on the direct and indirect CP-violating contributions ∆adir
CP and aind

CP [25]. The cross
indicates the best fit values with their 1σ uncertainties, and the ellipses the two-dimensional 1σ , 3σ and 5σ

regions. The filled circle shows the point (0,0), where the two CP-violating amplitudes vanish.

The size of this asymmetry is larger than the naive SM expectation |∆adir
CP| ≤ 3×10−4 [26, 27],

based on perturbative QCD or light-cone sum rules estimates. However, the measured value could
be explained within the SM with non-perturbative re-scattering effects of moderate size that en-
hance the U-spin invariant decay amplitude [28]. A direct CP asymmetry necessarily involves
a non-zero strong phase-shift difference between (at least) two interfering amplitudes. Eq. (3.2)
indicates the presence of a large phase-shift, which can obviously not be reproduced through
perturbative calculations. A reliable SM prediction of ∆adir

CP, including re-scattering corrections
[29, 30, 31, 32], remains an interesting theoretical challenge.
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4. b→→→ cτν̄τ transitions

Sizeable deviations from their predicted SM values have been found in the ratios

R(D(∗)) ≡ Br(B̄→ D(∗)τ−ν̄τ)

Br(B̄→ D(∗)`−ν̄`)
, (4.1)

with ` = e,µ . The experimental averages shown in Figure 2 exhibit a 3.1σ discrepancy with the
SM predictions quoted by the HFLAV group [25], which increases to 3.7σ with the more updated
theoretical values given in Ref. [33]:

R(D)SM = 0.300+0.005
−0.004 , R(D∗)SM = 0.251+0.004

−0.003 . (4.2)

A large part of the hadronic form factor uncertainties cancels in these ratios, which are also in-
dependent of Vcb. Therefore, the measurements suggest a rather large violation of lepton-flavour
universality that is quite unexpected in a tree-level SM transition. A similar 1.7σ deviation has
been also found for the analogous R(J/ψ) ratio of semileptonic Bc→ J/ψ transitions [34]. More-
over, the measured longitudinal polarization of the D∗− meson in B0→ D∗−τ+ντ [35] also differs
from its SM value by 1.6σ .
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Figure 2: R(D) and R(D∗) measurements, their world average (red ellipse) and SM predictions (cross) [25].

From the SM inclusive prediction Br(B→ Xcτν)/Br(B→ Xceν) = (0.222±0.007) [36, 37],
which does not involve any form factors, and Br(B→ Xc`ν) = (10.65± 0.16)% [10], one finds
that Br(B→ Xcτν) = (2.36±0.08)%, in agreement with the LEP result Br(b→ Xcτν) = (2.41±
0.23)% [10]. Since the measured R(D(∗)) ratios imply Br(B→ Dτν)+Br(B→ D∗τν) = (2.33±
0.11)%, these two final states saturate the inclusive width and there is no space left for other decay
modes, such as the D∗∗, that are expected to contribute more than 0.5% [36]. Thus, there is also
tension with the SM at the inclusive level.

The anomaly is dominated by the 2012–2013 BaBar results [38, 39], while the most recent
Belle [40, 41, 42] and LHCb [43, 44, 45] measurements are closer to the SM values. Moreover, the
normalized q2 distributions measured by BaBar [39] and Belle [40] do not favour large deviations
from the SM [37]. One must also take into account that the needed enhancement of the b→ cτν

transition is constrained by the cross-channel bc̄→ τν . A conservative (more stringent) upper
bound Br(Bc→ τν)< 30% (10%) can be extracted from the Bc lifetime [37, 46] (LEP data [47]).
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Taking the available experimental information at face value, one can investigate the possible
types of underlying NP interactions with a generic low-energy effective Hamiltonian,

H b→c`ν
eff =

4GF√
2

Vcb {(1+CVL)OVL +CVROVR +CSROSR +CSLOSL +CT OT}+h.c. (4.3)

where

OVL,R = (c̄γ
µbL,R)

( ¯̀Lγµν`L
)
, OSL,R = (c̄ bL,R)

( ¯̀Rν`L
)
, OT = (c̄σ

µνbL)
( ¯̀Rσµνν`L

)
. (4.4)

The SM corresponds to Ci = 0. Since potential NP contributions to the light-lepton couplings are
highly constrained by b→ c(e,µ)ν data [48], one can safely consider that NP effects are only
present for the τ . A global fit to all available experimental information has been recently done
in Ref. [33],1 neglecting CP-violating contributions (i.e., with real Ci) and taking CVR = 0. The
second condition follows from the assumption that the electroweak symmetry breaking is linearly
realized at the electroweak scale, which implies that CVR is flavour independent [49]. The fitted
results clearly indicate that NP contributions are needed (much lower χ2 than in the SM), but they
do not show any strong preference for a particular Wilson coefficient (χ2

min/d.o.f.= 37.4/54) [33]:

CVL = 0.09+0.13
−0.12 , CSR = 0.09+0.12

−0.61 , CSL =−0.14+0.52
−0.07 , CT = 0.008+0.046

−0.044 . (4.5)

While none of the fitted coefficients are required to be non-zero, the simplest interpretation of
this solution is a global modification of the SM. In fact, setting all coefficients but CVL to zero
one also gets a good fit. In addition to this SM-like global minimum, a second local minimum
(χ2

min/d.o.f.= 40.4/54) is found with larger non-SM contributions [33]:

CVL = 0.34+0.05
−0.07 , CSR =−1.10+0.48

−0.07 , CSL =−0.30+0.11
−0.50 , CT = 0.093+0.029

−0.030 . (4.6)

The measured D∗ longitudinal polarization fraction FD∗
L has a strong impact on the analysis

because, with the four fitted operators, its predicted value remains always below the 1σ experimen-
tal region. Including CVR in the fit helps to remove the tension with the B→D∗ data and opens new
(not satisfactory) fine-tuned solutions where the SM coefficient becomes very small, its effect being
substituted by several sizeable NP contributions, especially CVR . More precise experimental data is
needed to clarify the current situation. If the b→ c anomaly remains, an improved measurement of
FD∗

L could have major implications in its theoretical interpretation.

5. b→→→ s `̀̀ `̀̀ transitions

Several b→ sµ+µ− rates have been found at LHCb to be consistently lower than their SM pre-
dictions: B+→ K+µ+µ− [50, 51], B+→ K∗+µ+µ− [50], B0

d → K0µ+µ− [50], B0
d → K∗0µ+µ−

[52, 53, 54, 55], B0
s → φ µ+µ− [56, 57] and Λ0

b → Λµ+µ− [58, 59]. The angular and invariant-
mass distributions of the final decay products in B→ K∗µ+µ− have been also studied by ATLAS
[60], BaBar [61], Belle [62, 63, 64], CDF [65], CMS [66, 67] and LHCb [52, 53, 54, 55]. The

1An extensive list of references to previous analyses, most of them performed with a single mediator or operator
and with partial data information, can be found in Ref. [33].
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four-body Kπµ+µ− final state provides a rich variety of angular dependences, making possible to
disentangle the different dynamical contributions. Particular attention has been devoted to specific
combinations of angular observables that are free from form-factor uncertainties in the heavy-quark
mass limit, the so called optimized observables P′i (q

2) [68], where q2 is the dilepton invariant-mass
squared. A sizeable discrepancy with the SM prediction [69, 70, 71], shown in Figure 3, has been
identified in two adjacent bins of the P′5 distribution, just below the J/ψ peak. Belle has also
analyzed K∗e+e− final states [62, 63, 64], finding them compatible with the SM expectations.

]4c/2 [GeV2q
0 5 10 15

5'
P

1−

0.5−
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0.5

1

(1
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ψ/J
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S)

ψ
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CMS data
SM from DHMV
SM from ASZB

Figure 3: Comparison between the predicted SM values of P′5 and the experimental measurements [72].

The SM predictions for the previous observables suffer from hadronic uncertainties that are
not easy to quantify. However, LHCb has also reported sizeable violations of lepton universality,
at the 2.1-2.5σ level, through the ratios [73]

RK∗0 ≡
Γ(B0

d → K∗0µ+µ−)

Γ(B0
d → K∗0e+e−)

=

{
0.66+0.11

−0.07±0.03 , q2 ∈ [0.045,1.1] GeV2 ,

0.69+0.11
−0.07±0.05 , q2 ∈ [1.1,6.0] GeV2 ,

(5.1)

and [74]

RK ≡
Γ(B+→ K+µ+µ−)

Γ(B+→ K+e+e−)

∣∣∣∣
q2∈[1.1,6.0] GeV2

= 0.846+0.060
−0.054

+0.016
−0.014 , (5.2)

which constitute very clean probes of NP contributions. Owing to their larger uncertainties, the
recent Belle measurements of RK∗ [75] and RK [76] are compatible with the SM as well as with
LHCb.

Global fits to the b→ s`+`− data with an effective low-energy Lagrangian

Leff =
GF√

2
VtdV ∗ts

α

π
∑
i,`

Ci,` O`
i (5.3)

show a clear preference for NP contributions to the operators O`
9 = (s̄LγµbL)( ¯̀γµ`) and O`

10 =

(s̄LγµbL)( ¯̀γµγ5`), with ` = µ [77, 78, 79, 80, 81, 82, 83]. Although the different analyses tend to
favour slightly different solutions, two main common scenarios stand out: either δCNP

9,µ ≈−0.98 or
δCNP

9,µ =−δCNP
10,µ ≈−0.46. Both constitute large shifts (−24% and −11%, respectively) from the

SM values: CSM
9,µ (µb)≈ 4.1 and CSM

10,µ(µb)≈−4.3, at µb = 4.8 GeV. The first possibility is slightly
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preferred by the global analysis of all data, while the left-handed NP solution accommodates better
the lepton-flavour-universality-violating observables [78].

The left-handed scenario is theoretically appealing because it can be easily generated through
SU(2)L⊗U(1)Y -invariant effective operators at the electroweak scale that, moreover, could also
provide an explanation to the b→ cτν anomaly. This possibility emerges naturally from the so-
called U1 vector leptoquark model [84], and can be tested experimentally, since it implies a b→
sτ+τ− rate three orders of magnitude larger than the SM expectation [85]. For a recent review of
theoretical models with a quite complete list of references, see Ref. [86].

6. Summary

Uncovering the fundamental dynamics behind flavour-changing transitions and CP-violating
phenomena is one of the main pending questions in particle physics. In the SM, flavour emerges
from the Yukawa interactions with the scalar Higgs doublet, the less understood part of the elec-
troweak Lagrangian that is more open to theoretical speculations.

Sizeable deviations from the SM expectations have been identified in b→ cτν̄ and b→ s``
data. Whether they represent the first signals of new phenomena or just result from statistical
fluctuations and/or underestimated systematics remains to be understood. New experimental input
from LHC and Belle-II should soon clarify the situation. A confirmation of the current flavour
anomalies would constitute clear evidence of NP interactions and, moreover, would allow us to
infer their low-energy structure, providing precious hints on the underlying dynamics.
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