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1. Introduction

Top quark production measurements have always been an important pillar of the CERN LHC
program. Not only is the top quark the heaviest particle described by the Standard Model (SM)
but the large production of top quark pairs (tt̄) at the LHC energies allows an accurate comparison
between theory predictions for the top production properties. With the copious amount of data
collected by the CMS [1] experiment, measurements of single, double, and even triple differential
cross section as a function of kinematic variables can be performed. Studies of jet substructure and
underlying events also benefit from the large dataset by using the tt̄ system as a proxy for differ-
ent studies. A precise description of the tt̄ production can be used to probe next order corrections
to perturbative chromodynamics (QCD) calculations and electroweak corrections. This document
focuses on recent measurements provided by the CMS Collaboration for both inclusive and differ-
ential cross sections using the partial Run 2 data corresponding to an integrated luminosity of 35.9
fb−1 at 12 TeV, where the results are extrapolated to fiducial and full phase spaces and compared
to state-of-the-art calculations with next-to-leading order (NLO) and next-to-next-leading order
(NNLO) precision in QCD.

2. Inclusive cross section measurement

The inclusive production of tt̄ pairs serve as a stringent test of the Standard Model (SM), since
predictions at NNLO precision in QCD are now available [2]. The predictions rely on several
different generator parameters, like the top quark mass, the strong coupling constant αs, and the
parton distribution functions (PDFs) of the proton. The comparison between predictions and the
measurements for different centre-of-mass energies are shown in Fig. 1 (left). The most recent
inclusive cross section measurement was carried out using the dilepton decays of the tt̄ system at√

s = 13TeV [3]. The measurement is split into different regions defined by the additional jets and
the b-flavour jets multiplicity. To reduce the effect of jet energy corrections, one of the leading
uncertainties, the distribution of the second highest jet pT (Figs. 2 and 3) is used as the main
discriminant. This measurement reaches a standalone precision of 4% and is in good agreement
with the NNLO + NNLL prediction shown in Fig. 1 (right).

3. Differential cross section measurements

While inclusive cross section measurements are useful to give the overall description, a dif-
ferential approach can be used in order to investigate specific aspects of the theory. For instance,
observables like the jet multiplicity are sensitive to high order corrections at Matrix Element (ME)
level, the radiation modelling, and the parton-shower description. To compare these distributions,
the cross section as a function of the jet multiplicity and other distributions are performed [5]. The
results are unfolded to particle level to correct for detector effects. In Fig. 4 the normalised differ-
ential cross sections are compared to different generators. In particular, Powheg v2 [6] interfaced
with Pythia8.2 [7] and MG5aMC@NLO [8] matched to PYTHIA8.2 using the FxFx prescription
behave differently at different regions of the jet multiplicity spectrum.

A different distribution that has been known to be poorly described by simulations is the pT of
the top quark. In Fig. 5 the measurement, unfolded to parton level, is compared to full NNLO +
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Figure 1: Left: Top quark pair cross section summary of CMS measurements in comparison with the theory
calculation at NNLO+NNLL accuracy. The Tevatron measurements are also shown. Right: Top quark pair
cross section summary of CMS measurements at 13 TeV including comparison with the theory calculation
at NNLO+NNLL accuracy. More information available at [4]

NNLL predictions and even beyond NNLO predictions. While the agreement does improve when
considering beyond next-order corrections, the full distribution of the top quark pT is not well
described by any of the current predictions.

To better characterise the features of the top quark distribution a multi-differential measure-
ment was performed for the first time in Top-quark physics. In [9], measurements of the normalised
tt̄ cross section as a function of kinematic distributions related to the top and tt̄ system are per-
formed. The results are extrapolated to parton level and compared to different generators. A χ2

test is also performed to quantify the agreement between the measurement and predictions.
Fig. 6 shows the distribution of the top quark pT at different M(tt̄) regions. Comparisons with

different generators confirm what was observed in [5] and give a new insight by showing that the
description becomes progressively worse for higher values of M(tt̄).

4. Jet substructure and underlying event measurements

The large amount of tt̄ events collected during Run 2 also allow measurements of other impor-
tant quantities by using the tt̄ system as a proxy. Recent CMS studies taking this approach are the
investigation of jet substructure variables [10] and underlying events [11]. Jet substructure vari-
ables are important to derive different simulation tunes and to study the differences between the
distributions of gluon and quark initiated jets, where the latter can be further divided into different
flavour components. Fig. 7 shows the comparison between measurement and simulations for the
charged constituent multiplicity for different jet origins and flavours. Comparatively, the greatest
disagreement is observed for b-jets, which could profit from a flavour specific simulation tune.

The underlying event study aims at providing measurements, extrapolated to particle level, for
distributions sensitive to hadronic activities that are not attributed to particles stemming from the
tt̄ decays. Moreover, different schemes for colour reconnection, parton-shower description, and
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Figure 2: Distributions in the eµ channel after the fit to the data from [3]. In the left column events with
zero or three or more b-tagged jets are shown. The middle (right) column shows events with exactly one
(two) b-tagged jets. Events with zero, one, two, or three or more additional non-b-tagged jets are shown in
the first, second, third, and fourth row, respectively. The hatched bands correspond to the total uncertainty in
the sum of the predicted yields including all correlations. The ratios of the data to the sum of the simulated
yields after the fit are shown in the lower panel of each figure. Here, the solid gray band represents the
contribution of the statistical uncertainty in the MC simulation.

multi-parton (MPI) scattering effects can be probed. Fig. 8 shows the hadronic activity distribution
for different variations of the generator parameters. Comparing with the measurement, scenarios
using lower values of αFSR

S (mZ)) are favoured. One can also conclude that considering MPI effects
to the simulation largely improves the description of the generators.

5. Summary

With the large dataset collected during the Run 2 of the LHC, the CMS Collaboration has
performed measurements of the inclusive and differential cross sections of the tt̄ system, providing
insight to different stages of the event generation. The different measurements are important to fur-
ther improve the description of different simulations, while characterising discrepancies observed.
Multi-differential measurements and observables that benefit from the tt̄ system as a proxy can also
be further improved by exploiting new analysis techniques and the full Run 2 dataset.
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Figure 3: Distributions in the µµ channel (left) and ee channel (right) after the fit to the data from [3].
Further details are described in the caption of Fig. 2.
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Figure 5: The differential tt̄ production cross sections as a function of pT from [5] are shown for the data
(filled circles), the theoretical predictions with beyond-NLO precision (other points) and the prediction from
POWHEG+PYTHIA (solid line). Further details are described in the caption of Fig. 4.
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data are reported. The hatched regions correspond to the theoretical uncertainties in POWHEG + PYTHIA.
In the lower panel, the ratios of the data and other simulations to the ‘POW+PYT’ predictions are shown.
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Figure 7: Left: Charged particle multiplicity λ 0
0 (N) normalised and unfolded to the particle level, for

inclusive jets from [10]. Data (points) are compared to different MC predictions (upper), and as MC/data
ratios (lower). The hatched and shaded bands represent the statistical and total uncertainties, respectively.
Right: Distribution of the charged multiplicity, unfolded to the particle level, for jets of different flavors.
The second panel shows the corresponding ratios of the different flavors over the inclusive jets data. The
sub-panel shows the ratios of the different MC predictions over the bottom, light-quark-enriched, and gluon-
enriched jet data.
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Figure 8: The normalised differential cross section as a function of Nch is shown from [11]. The data
(coloured boxes) are compared to the nominal POWHEG+PYTHIA8 predictions and to the expectations
obtained from varied α ISR

S (mZ) or αFSR
S (mZ)) POWHEG+PYTHIA8 setups (markers). The different panels

on the lower display show the ratio between each model tested (see text) and the data. In both cases the
shaded (hatched) band represents the total (statistical) uncertainty of the data, while the error bars represent
either the total uncertainty of the POWHEG+PYTHIA8 setup, computed as described in the text, or the
statistical uncertainty of the other MC simulation setups.
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