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Introduction A powerful framework to identify and parametrise deviations with respect to the
Standard Model (SM) predictions in a model-independent way is the Standard Model Effective
Field Theory (SMEFT) [1, 2, 3] - see [4] for a recent review. In the SMEFT, physics beyond the
SM which manifests at high scales E ' Λ is parameterised, at the accessible scale E� Λ, in terms
of higher-dimensional operators built up from the SM fields and symmetries. This technique allows
one to construct complete bases of independent operators at any mass dimension, which can then be
matched to ultraviolet-complete theories. The resulting Lagrangian then admits a power expansion

LSMEFT = LSM +
Nd6

∑
i

ci

Λ2 O
(6)
i +

Nd8

∑
j

b j

Λ4 O
(8)
j + . . . , (1)

where LSM is the SM Lagrangian, ci are the (unknown) Wilson coefficients, and {O(6)
i } and {O(8)

j }
stand for the elements of the operator basis of mass-dimension d = 6 and d = 8, respectively.

The number of operators that enter at each mass dimension is known [5, 6], as are the complete
bases of operators at dimensions 5-7 [7, 8, 2, 3, 9, 5]. Operators with d = 5 and d = 7, which
violate lepton and/or baryon number conservation [10, 11], and are usually not considered in fits to
the SMEFT using LHC data. The dimension-6 terms are therefore the leading deviation from the
SM.

In general, the effects of the dimension-6 operators can be written as follows:

σ = σSM +
Nd6

∑
i

κi
ci

Λ2 +
Nd6

∑
i, j

κ̃i j
cic j

Λ4 , (2)

where σSM indicates the SM prediction and ci are the Wilson coefficients we wish to constrain. The
O(Λ−2) corrections to the SM cross-sections represent formally the dominant correction. The third
term representing O(Λ−4) effects, and are from the squared amplitudes of the SMEFT operators. In
principle, this term may not need to be included, depending on whether the truncation at O(Λ−2)

order is done at the Lagrangian or the cross-section level, but in practice there are often valid
reasons to include them in the calculation.

In general, the operators run with the scale, meaning the coefficients, ci, will depend on the
typical momentum transfer of the process. This dependence can be computed using the renormal-
isation group equations (RGE), which at dimension-6 are fully known [12, 13, 14, 15, 16, 17].
One can typically ignore operator-mixing effects when focusing on processes with a similar energy
scale, e.g. E ' mt . Additionally, the inclusion of NLO QCD corrections will reduce this scale
dependence, making the RG effects less significant [18, 19].

The top quark sector of the SMEFT An important aspect of any SMEFT analysis is the need
to include all relevant operators that contribute to the processes whose data is used as input to the
fit. Only in this way can the SMEFT retain its model and basis independence. However, unless
specific scenarios are adopted, the number of non-redundant operators becomes unfeasibly large:
59 for one generation of fermions [3] and 2499 for three [14] at dimension-6. This implies that a
global SMEFT fit will have to explore a huge parameter space with potentially a large number of
flat (degenerate) directions.
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Figure 1: The 95% CL bounds on the degrees of freedom included the TopFitter analysis, both in the
marginalised and in the individual fit cases. The definitions of the operators is given in [21]. Figure from [21].

Looking initially at just the top quark sector of the SMEFT, there are a couple of groups who
have performed fits to the subset of operators relevant to top physics. TopFitter [20, 21] use parton-
level measurements of tt̄-pair production, single-top production and tt̄γ/Z production from the
LHC run I and II and Tevatron, with a total of 227 measurements. Fitting is performed using the
PROFESSOR [22] framework, with the SMEFT corrections computed at tree-level and neglecting
O(Λ−4) effects. The result of the TopFitter analysis is shown in Fig. 1, both at the marginalised and
individual fit levels. TopFitter have recently [23] extended their analysis to include particle-level
measurements using run II data from the LHC.

The SMEFiT collaboration [24] follows the strategy of the LHC Top Quark Working Group
note [25]. They adopt the Minimal Flavour Violation (MFV) hypothesis [26] in the quark sector
as the baseline scenario. They additionally impose a U(2)q×U(2)u×U(2)d flavour symmetry in
the first two generations. They therefore consider 34 degrees of freedom, which are constrained by
tt̄-pair production, single-top production, as well as tt̄ and single-top associated production, with
a total of 103 measurements from the LHC run II. SMEFiT compute all the SMEFT contributions
at O(Λ−4) with NLO QCD corrections where available [27, 18, 28, 29, 30, 31, 32], and the SM
calculations at NNLO for available processes.

In Fig. 2 we show the bounds computed using the SMEFiT methodology – as different flavour
assumptions are used by TopFitter and SMEFiT, one cannot directly compare the bounds obtained
by the two groups for all operators. In general, within finite-size uncertainties, the bounds from
individual fits will be much tighter than the marginalised bounds because in the former, correlations
between the degrees of freedom are neglected, which may be very large. Care must therefore be
taken when using individual bounds, as they will in general be unrealistically tight.

SMEFiT have recently reported [33] on the applicability of the Bayesian reweighting tech-
nique developed for fitting Parton Distribution Functions [34, 35]. This method has two advan-
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Figure 2: The 95% CL bounds on the 34 degrees of freedom included in SMEFiT, both in the marginalised
and in the individual fit cases, with the bounds reported in the LHC Top WG EFT note [25]. The definitions
of the operators is given in Ref. [24]. Figure from Ref. [24].

tages in comparison to a new fit to an extended set of data: first, it is essentially instantaneous,
and second, it can be carried out without needing access to the original SMEFT fitting code. They
find that, under well-defined conditions, the results obtained with reweighting all the single-top
t-channel data are equivalent to those obtained with a new fit to the extended set of data. We show
in Fig. 3 the prior results without any t- or s-channel single-top production data included with
those after the t-channel measurements have been added either by reweighting or by performing a
new fit. Within finite-size uncertainties, excellent agreement is found between the reweighted and
new fits. The reweighting procedure is not restricted to the SMEFiT analysis; any Monte Carlo
(MC) SMEFT fit, such as Sfitter [36, 37], should be able to use reweighting in order to gain an
understanding of the impact of new data.

The Sfitter collaboration have also performed a fit to the top quark sector [37]. They look at the
coefficients that are constrained by the production or decay of a top quark, computing all available
SMEFT measurements to NLO QCD where available. As with the SMEFiT methodology, Sfitter
represents the probability density in the space of Wilson coefficients as an ensemble of MC replicas.
By using a MC methodology, one avoids making any assumptions about the underlying probability
distributions of the Wilson coefficients, and does not require Gaussian experimental uncertainties.
We show in Fig. 4 the bounds obtained by the Sfitter analysis at the 68% and 95% CL.

Towards global fits in the SMEFT In order to be able to perform global fits to the SMEFT, one
needs to be able to combine data from different sectors of the SMEFT, such as the top and Higgs
sectors. Several groups have performed fits to the electroweak precision observables (EWPO) or
Higgs data, such as Gfitter [38], Zfitter [39] and HEPFit [40]. The Sfitter collaboration have re-
cently [36] performed non-marginalised fits to the EWPO and Higgs data simultaneously, including
O(Λ−4) effects in the SMEFT at LO in the SMEFT. In Fig. 5 we show the results of individual fits
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Figure 3: The 95% CL bounds for the Nop = 34 Wilson coefficients considered in the SMEFiT reweighting
analysis of the top quark sector. Figure from [33].

Figure 4: The 68% and 95% CL bounds on the degrees of freedom included in Sfitter top analysis, both in
the marginalised and in the individual fit cases. The definitions of the operators is given in Ref. [37]. Figure
from Ref. [37].

to the operators considered in the Sfitter analysis at the 68% and 95% CL. In Ref. [41], a combined
fit of EWPO, Higgs and diboson data was performed, marginalising over 20 operators in total, ne-
glecting O(Λ−4) effects, at LO in the SMEFT. We show in Fig. 6 the marginalised 95% CL bounds
and central values obtained, marginalising over all operators. A combined fit to EWPO, Higgs and
diboson data was also performed in Ref. [42] to the 20 parameters of interest with 122 measure-
ments. The results in the analysis are shown at both O(Λ−4) and O(Λ−2), in order to understand
the impact of the higher order contributions. We show in Fig. 7 the 95% CL bounds obtained by
marginalising over the operators.

We will finally turn to the flavour sector of the SMEFT. The Python library smelli (SMEFT
likelihood) [43] provides the global likelihood for combined EWPO and flavour observables, with
265 measurements in total. As they combine sectors with typical scales above and below the
electroweak scale, the RG running of the Wilson coefficients is taken into consideration. We show
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Figure 5: The 68% and 95% CL bounds for individual Wilson coefficients included in the Sfitter electroweak
and Higgs analysis. The definitions of the operators given in Ref. [36]. Figure from Ref. [36].

in Fig. 8 the 1σ and 2σ 2-dimensional likelihood contours for two Wilson coefficients considered
in smelli which are of interest in top physics.

Figure 6: The 68% and 95% CL bounds for marginalised Wilson coefficients included in Ref. [41]. The
definitions of the operators given in Ref. [41]. Figure from Ref. [41].

Summary We are in a position where fits to Wilson coefficients in the SMEFT are able to
marginalise over many operators at a time. Furthermore, there has been a huge amount of progress
in the SMEFT at NLO – in addition to the top processes discussed above, there have also been
many electroweak and Higgs processes computed through to NLO QCD in the SMEFT [44, 45,
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Figure 7: The 95% CL bounds for marginalised Wilson coefficients included in Ref. [42]. The definitions
of the operators given in Ref. [42]. Figure from Ref. [42].

Figure 8: 1σ and 2σ likelihood contours for the [Clu]2233 and [Ceu]2233 Wilson coefficients. The definitions
of the operators given in Ref. [43]. Figure from Ref. [43].

46, 47, 48, 49, 50]. There has also been progress on fitting multiple sectors at once and with the
full RGE at dimension-6 understood, in principle one should be able to combine measurements at
different scales to constrain Wilson coefficients. We are therefore now at a point where we can
move towards truly global fits of the SMEFT.
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