
P
o
S
(
I
S
G
C
2
0
1
9
)
0
0
3

Towards Predictive Maintenance with Machine
Learning at the INFN-CNAF computing centre

L. Giommi∗
University of Bologna, Italy
E-mail: luca.giommi3@unibo.it

D. Bonacorsi, T. Diotalevi, S. Rossi Tisbeni, L. Rinaldi

University of Bologna, Italy

L. Morganti, A. Falabella, E. Ronchieri, A. Ceccanti, B. Martelli

INFN-CNAF, Italy

The INFN-CNAF computing center, one of the Worldwide LHC Computing Grid Tier-1 sites,
is serving a large set of scientific communities, in High Energy Physics and beyond. In order to
increase efficiency and to remain competitive in the long run, CNAF is launching various activities
aiming at implementing a global predictive maintenance solution for the site.
This requires a site-wide effort in collecting, cleaning and structuring all possibly useful data
coming from log files of the various Tier-1 services and systems, as a necessary step prior to
designing machine learning based approaches for predictive maintenance.
Among the Tier-1 services, efficient storage systems are one of the key ingredients of Tier-1
operations. CNAF uses the StoRM service as a Grid Storage Resource Manager solution: its
operations are logged in a very complex manner, as the log content is deeply unstructured and
hard to be exploited for analytics purposes. Despite such difficulty, the StoRM logs are a precious
source of information for operators (e. g. real-time monitoring and anomaly detection), for
developers (e. g. debugging, service stability, code improvements) and for site managers (service
optimization, storage usage efficiency, time and money saving ways to spot and prevent unwanted
behaviors).
Based on previous experiences on Big Data Analytics and Machine/Deep learning in the CMS
experiment, this work describes how the StoRM logs can be handled and parsed to extract the
relevant information, how such log handling can be designed to work automatically, how to define
and implement metrics to tag critical states of the service, how to correlate StoRM events with
external services events, and ultimately how to contribute to the future CNAF-wide predictive
maintenance system.
Initial results in this activity are presented and discussed. Furthermore, a mention to ongoing
complementary work at the CNAF center is also mentioned.

International Symposium on Grids & Clouds 2019, ISGC2019
31st March - 5th April, 2019
Academia Sinica, Taipei, Taiwan

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:luca.giommi3@unibo.it 


P
o
S
(
I
S
G
C
2
0
1
9
)
0
0
3

Towards Predictive Maintenance with Machine Learning at the INFN-CNAF computing centre L. Giommi

1. Introduction

The INFN-CNAF [1] computing center, one of the Worldwide LHC Computing Grid Tier-1
sites, uses StoRM (STOrage Resource Manager) [2] as a Grid SRM solution. In order to increase
efficiency and to remain competitive in the long run, CNAF is launching various activities aiming
at implementing a global predictive maintenance solution for the site. Because efficient storage
systems are one of the key ingredients of Tier-1 operations, CNAF decided that a starting point of
such an ambitious project could be the investigation of the StoRM service.

The state and the operations records of this service (and of the services associated to it) are
stored in several log files and in a complex manner, as the log content is deeply unstructured and
hard to be exploited for analytics purposes. The first step of this work is to handle and parse the log
files to extract relevant pieces of information and design it to work automatically. In order to predict
anomalies, it is crucial to define both a problematic period (with some anomalies in the system)
and a normal one (to be used as benchmark). In this way it is possible to compare the behavior
of the service in both periods and define metrics to tag critical states. This operation can be done
with the help of Machine Learning (ML) techniques. A predictive model is built through specific
training data, therefore this model would be able to primarily detect problems which are similar to
the specific one. Despite this, a general behavior of the system in critical situations can be defined
starting from this specific problem and generalized to a broader scenario. In order to verify this
statement and to create an effective predictive system (that can be exploited in the perspective of
predictive maintenance), it is necessary to define other different critical states detected in the past,
to collect all the useful data logs and to create for each one of them a model that will be able to
detect similar problems in the future.

In particular, this work describes the steps followed in the study of the log files coming from
different sources referred to a particular period of time (specifically from December 1st to Decem-
ber 8th, 2018) and how such information could be correlated and used to create ML models for
anomalies prediction.

2. Storage Resource Managers

Storage Resource Managers (SRMs) are middleware services whose function is to provide dy-
namic space allocation and file management of shared storage resources geographically distributed
[3]. SRMs can have files stored in several physical locations and can also bring them from tape to
disk for direct access by a client [4]. Once the file is available for I/O, a TURL (transfer URL) is
returned for a temporary access to the file controlled by the pinning lifetime. A similar capability
exists when a client wishes to put a new file into SRM. SRMs do not perform file transfers, but can
invoke middleware components to do them, as GridFTP.

The SRM interface provides asynchronous and synchronous methods. Asynchronous methods
return a token associated to a request, and the corresponding action is performed by the SRM
service asynchronously (such as the srmPrepareToPut method for preparing the SRM to accept new
data and the srmPrepareToGet method to get read access to the desired data resource). The client
can retrieve the status of the request at any time by addressing it through the specific token. This is
the case for data access functionalities. Instead, synchronous requests return at completion giving

1



P
o
S
(
I
S
G
C
2
0
1
9
)
0
0
3

Towards Predictive Maintenance with Machine Learning at the INFN-CNAF computing centre L. Giommi

back the control to the client (e.g. blocking calls). This is the case of directory and file management
(e.g. srmLs, srmMkdir and srmRmdir) and space management functions (e.g. srmReserveSpace).

3. The StoRM service

Since 2003, CNAF has been hosting the Italian Tier-1 data center for the High-Energy Physics
(HEP) experiments at the Large Hadron Collider in Geneva (and more, non-HEP experiments),
providing the resources, support and services needed for data storage, data distribution, data pro-
cessing, data analysis and Monte Carlo production. CNAF has been involved in the development of
a large set of software products. In the area of middleware for distributed systems CNAF supports,
maintains and further evolves widely-used products, such as StoRM [5].

StoRM is a storage manager service for generic disk-based storage systems, compliant with
the standard SRM interface version 2.2. StoRM is the SRM solution adopted by the Tier-1 hosted
at CNAF (and by other Tier-2s), and it has been developed with the specific aim of providing
high performing parallel file systems like GPFS and Lustre, but also other standard POSIX file
systems, through a SRM interface (currently CNAF uses GPFS as parallel file system). In a cluster
configuration, the file system allows large numbers of disk attached to multiple storage servers
to be configured as a single file system. Since it generalizes the file system access to the Grid,
StoRM also takes advantage from the file system security mechanism to ensure an authenticated
and authorized access to the data.

A grid site that provides an efficient, secure and reliable way to access data through standard
POSIX calls [3, 6] is shown in Figure 1a. A job running on a worker node belonging to the GPFS
NSD (Network Shared Disk) has direct access to the desired file into the Storage Element. In this
scenario StoRM assures that the user data will be available for all the time the access operation
goes on.

StoRM has a multilayer architecture made by two stateless components, called Frontend and
Backend, and one database [7, 8]. The Frontend exposes the SRM web service interface, manages
user authentication, stores SRM requests data into a database, retrieves the status of ongoing re-
quests, and interacts with the Backend. The Backend is the core of StoRM service since it executes
all synchronous and asynchronous SRM functionalities. It processes the SRM requests managing
files and space, it enforces authorization permissions and it can interact with other Grid services.
Moreover the Backend is able to use advanced functionalities provided by the file system to accom-
plish space reservation requests. A simple StoRM Service Architecture schema is shown in Figure
1b.

3.1 Logging

The logging activity represents an important functionality of both StoRM components, and of
the services linked to them. They have multiple ways of logging, or rather there are different kind
of files in which specific information is stored [9].

The information related to the services can be obtained by the log files produced by the services
themselves or through the ELK (Elasticsearch, Logstash and Kibana) stack suite [10], thanks to a
complementary infrastructure work presented in this conference [11].

2



P
o
S
(
I
S
G
C
2
0
1
9
)
0
0
3

Towards Predictive Maintenance with Machine Learning at the INFN-CNAF computing centre L. Giommi

(a) (b)

Figure 1: Pictorial view of storage management with GPFS and StoRM is shown in 1a (where WN
stands for Worker Node and CE for Computing Element). A simple StoRM service architecture
schema, with one Backend and one Frontend, is shown in 1b.

The StoRM service at CNAF is used by HEP experiments, including e.g. ATLAS. Each ex-
periment has a different implementation of the StoRM service and in some cases the structure and
rules of logging are different. In the following, the case of the ATLAS experiment is chosen for a
first exploration. There is no particular reason for choosing the ATLAS case: the followed steps
can be applied also for the other experiments, except for the parsing part that has to be modified
due to the fact that the rules of logging are different.

3.1.1 Frontend logging

The Frontend stores information about the service status and about the SRM requests received
and managed by the process. In order to manage the considerable amount of requests (of the
order of a few dozen per second in a normal day), two Frontend services have been deployed for
the ATLAS experiment on two different servers (storm-fe-atlas-07 and storm-atlas) logging two
different files, named storm-frontend-server.log. An example of the storm-frontend-server.log file
content is shown in Figure 2.

Figure 2: Example of the storm-frontend-server.log file content.

Each line contains the ‘datetime’, the ‘thread’ that manages the request, the ‘type’ of the

3



P
o
S
(
I
S
G
C
2
0
1
9
)
0
0
3

Towards Predictive Maintenance with Machine Learning at the INFN-CNAF computing centre L. Giommi

message (that can be INFO, WARN, ERROR and NONE), the ‘request-id’ and the actual content
of the message.

Another service linked to the Frontend is monitoring.log. It provides information about the
operations executed in a certain amount of time, called Monitoring Round, that is 1 minute by
default.

3.1.2 Backend logging

The Backend log files provide information on the execution process of all SRM requests.
StoRM Backend log files are the followings:

1. storm-backend.log, the main log file where each single request and errors are logged;

2. heartbeat.log, an aggregated log that shows the number of synchronous and asynchronous
requests occurred from startup and on last minute;

3. storm-backend-metrics.log, a finer grained monitoring of incoming synchronous requests,
containing metrics for individual types of synchronous requests.

The Backend service stays in the the storm-atlas machine, the same in which one of the two Fron-
tend services is located.

3.2 GridFTP

StoRM involves the GridFTP middleware component [12] to perform file transfer operations.
In the current deployment at the INFN-CNAF site, StoRM uses for the ATLAS experiment two
GridFTP servers, called ds-808 and ds-908. The information about GridFTP processes is stored in
two log files, storm-globus-gridftp.log and storm-gridftp-session.log. They have a similar content,
and for our purposes the second will be explored and used. It contains all the information regarding
transfers, namely the hostname opening the connection, the DN (Distinguished Name) and the
alias of the user, the TURL of the transferred file. An example of the storm-gridftp-session.log file
content is shown in Figure 3.

Figure 3: Example of the storm-gridftp-session.log file content.

4



P
o
S
(
I
S
G
C
2
0
1
9
)
0
0
3

Towards Predictive Maintenance with Machine Learning at the INFN-CNAF computing centre L. Giommi

3.3 CNAF monitoring system

The monitoring infrastructure at CNAF is based on InfluxDB [13] as time series database to
store data gathered from various sensors. InfluxDB is targeted at use cases for DevOps, metrics,
sensor data, and real-time analytics. Some of the key features that InfluxDB currently supports
are: SQL like query language, HTTP(S) API, storing of billions of data points, database managed
retention policies for data. An example of a query is shown in Figure 4. When a query is done to
the database, the retention policy (RP) has to be specified: this can be 1 week, 1 month, 6 months,
1 year. The first two RPs have a finer mode of logging, 1 row at each minute and 1 row at each 15
minutes respectively.

Figure 4: Example of a query to InfluxDB.

4. Machine Learning approaches on CNAF logs

As previously mentioned, CNAF aims at building a predictive maintenance system using data
stored in log files. There are many log sources and each one has a different structure with a differ-
ent content. A big effort has been devoted to parse all these information, creating different classes
for each source that take as input a log file and give as output a csv file. Therefore the stored in-
formation (features) is large, and it is not easy to use them for a unique prediction system. As a
preliminary approach, it has been preferred to start with the sources individually taken, investigat-
ing the behavior of the features contained inside each log file. Then ML techniques have been used
in order to create a model for each of them that would be able to predict anomalies. The possible
sources to be used for this purpose are: metrics suitably taken from InfluxDB, storm-frontend-
server.log files (for both storm-fe-atlas-07 and storm-atlas), monitoring.log, storm-backend.log,
heartbeat.log, storm-backend-metrics.log, storm-gridftp-session.log files (one for ds-808 and one
for ds-908). Currently subset of these sources have been used, however including all of them in
order to have as much information as possible for a better predictive system will be our next move.

4.1 Choice of the “critical period”

An important aspect is the definition of a period of interest in which an anomaly of the system
is detected. In this way it is possible to compare the features in this period respect to a normal
one, so to study differences in behavior and correlations. In this ML techniques may help to define
which features are more important for a discrimination between the two different periods and may
provide a way to forecast an anomaly similar to that detected in the problematic one.

In this work, the days ranging from December 5th to December 8th have been selected as
the problematic period, while the days between December 1st to 4th of have been selected as the
normal one. These days have been selected because an anomaly was detected in the morning of the
December 5th, as reported by a GGUS ticket (see Figure 5). After a first investigation, the problem
seemed to be related to the storage access from the farm worker-nodes. Such access, for the ATLAS

5



P
o
S
(
I
S
G
C
2
0
1
9
)
0
0
3

Towards Predictive Maintenance with Machine Learning at the INFN-CNAF computing centre L. Giommi

experiment, is related to jobs of two kinds: Pilot, which are jobs coming from the farm, and Data
Management, which are jobs coming from the Grid. In order to disentangle the problem, starting
from the afternoon of December 7th no more jobs from the farm (of type Pilot) were accepted until
December 10th. On December 13th the situation improved and two issues were detected: a wrong
configuration of the file system and a wrong configuration of the ATLAS Production and Analysis
system (PANDA) queues. Moreover, a new GridFTP server was added in order to manage rate of
requests.

Figure 5: Part of the content of the ticket notifying the anomaly. Details on the submitter has been
blanked out.

For what concern the improper configuration of the filesystem, it is possible to check which is
the maximum limit of memory in the GPFS cluster, how much memory has been assigned and the
quota that remains in doubt. The sum of the two contributions should not overcome the maximum
limit, but a StoRM process can consider that there is free space even if the sum overcomes the limit.
In this case, StoRM tells to GridFTP that there is free space even if it is not possible to write on
the file system, hence the transfers fail. The quota disk of GPFS is almost 30 PB, and the doubt
quota disk was of the order of 200-300 TB during the problematic days, whereas in a normal day
it is of the order of 1 TB. In this situation, the sum of the assigned memory plus the doubt quota
was almost, or overcoming, the limit quota. This problem was detected and solved in the evening
of the December 9th.

The storage-farm access modalities are defined within the ATLAS Workload Management
System [14] and the ATLAS Grid Information System (AGIS [15]), where several “copytool” can
be used to optimize the storage access at a given site. For the INFN-T1, data on storage are read-
accessed from the farm worker nodes via POSIX access (since the GPFS file system is exported
and mounted on all the worker nodes). This default (primary) access mode is managed by the
“storm copytool”, written ad hoc for sites having StoRM for storage management. An alternative
access could be done copying the input data on the WN with wrapped gfal utilities (the copy request
passes through SRM-GridFTP). This procedure is managed by the “rucio copytool”. Writing action
instead has to be always authenticated so the Pilot certification is used to allow to write on the
storage passing through StoRM, and the “rucio copytool” is always used. The problem about the
wrong configuration of the queues was due to the fact that “storm” (POSIX) access was not set as
primary and the “rucio copytool” was selected, this causing an abnormal increase of access through
StoRM-GridFTP and overload of the system.

6



P
o
S
(
I
S
G
C
2
0
1
9
)
0
0
3

Towards Predictive Maintenance with Machine Learning at the INFN-CNAF computing centre L. Giommi

As detailed, in the first days of December, unfortunately there were two problems of different
nature and also several interventions made by the experts in the meanwhile before solving the
critical situation. There is no certainty that these two facts were the cause of the problem and there
is no certainty that the period considered as “normal” did not show any problem; on the contrary,
despite the two issues were discovered in the critical period, it is very likely that they existed also
in the previous days. The only thing we know is that in the normal period the system seemed to
be robust against these facts, without showing any critical state. So the idea is to compare the
problematic period to the immediately previous one using ML techniques, in order to try to assess
whether there is a real difference between the two periods and whether there is a chance to predict
the anomalies in advance.

4.2 Procedure

In the case of the storm-frontend-server.log file, considering the sum of logs from the two
different hosts storm-fe-atlas-07 and storm-atlas, the rate of logging is high (almost 50 Hz, so 50
rows per second) and consequently the files are not very handy given their size (one day logging
is of the order of 1 GB). Therefore, a possible way to manage these files was to try to summarize
their content in only one row every 15 minutes. In this way for example we can say how many
PrepareToPut (PTP) or PrepareToGet (PTG) were done in some fixed 15 minutes only summing
the times that these terms appeared as “request” in the log message. The duration of 15 minutes is
arbitrary but justified: data in InfluxDB used for this work have a retention policy of 1 month, so
there is 1 row every 15 minutes. From a point of view of comparison between different sources, we
need to standardize the data and thus 15 minutes seems a reasonable choice. Moreover, 15 minutes
are also enough to eventually provide a warning in case an anomaly is about to come.

The steps followed for each source are:

• parse log files, converting them in the csv form;

• study the content of the messages and then decide if they contains sub-information that must
become new features for the ML techniques;

• summarize the content in one row at each 15 minutes;

• check the correlation of features;

• use ML algorithms for the classification problem at issue, where logs from “good” days are
assigned to the “0” class and logs from “bad” days are assigned to the “1” class;

• define the most important features for the discrimination between the two days and use them
in the building of the best models.

5. Results

At the beginning of this work, log files from the single sources have been individually taken
and only later the information has been combined to check for correlation.

7



P
o
S
(
I
S
G
C
2
0
1
9
)
0
0
3

Towards Predictive Maintenance with Machine Learning at the INFN-CNAF computing centre L. Giommi

5.1 InfluxDB metrics

Many metrics can be extracted from the Influx database. In Table 1 the ones selected are shown
together with a description.

Metric Description

gpfs_atlas.*
* (read, write) reading and writing speed from the file
system for the two GridFTP machines measured in
bytes per second

interface.bond0.*xBytes
bytes * (r,t) received and transferred on the net
interface bond0

interface.bond0.*xDrops
packets lost in * (r,t) reading and writing on the net
interface bond0 measured in bytes

interface.bond0.*xErrors
* (r,t) reading and writing errors on the net interface
bond0 measured in bytes

iostat.avg-cpu.pct_*
percentage of time where the cpu is *
(idle, iowait, nice, user, system)

load_avg.five_*
average over 5 minutes of the CPU load average for the
two GridFTP machines and the two Frontend services

storm.async_*_*_storm-atlas
average number of * (ptg, ptp), the average of those that
fails, of those that are successfully ended, average in
duration * (n, fail, ok, time) in the machine storm-atlas

storm.sync_storm-atlas
average number of synchronous operations for the
storm user in the machine storm-atlas

user_percent.*.*
* (cpu, mem) CPU time, memory used by the storm
process in the machine * (storm-atlas, storm-fe-atlas-07)

perc_mem_free_*
percentage of free memory of the machines where the
two GridFTP and the two Frontend services are located

Table 1: Description of the metrics extracted from InfluxDB for the present work (they are 47 in
total).

The correlation matrix of the more meaningful metrics (among the 47 total metrics), consider-
ing only “bad” days and with the absolute value of the correlation coefficients greater than 0.6, is
shown in Figure 6 .

A dozen of ML algorithms has been used (including AdaBoost classifier “AB”, XGBoost
“XGB”, RandomForest “RF” and Multi-layer Perceptron classifier “MLP”), all of them taken from
the scikit-learn library [17]. No ML frameworks (such as Tensorflow or Theano) have been used
and no hyperparameter tuning has been performed, since the performances of the models obtained
are enough for our limited purpose. Indeed, for all of them the accuracy is close to 100% (see
Figure 7) and the area under ROC curve is close to 1.0.

This result shows that every algorithm is able to predict almost always that an input row with
target “0” comes from a good day and one with target “1” comes from a bad day. It means that the

8



P
o
S
(
I
S
G
C
2
0
1
9
)
0
0
3

Towards Predictive Maintenance with Machine Learning at the INFN-CNAF computing centre L. Giommi

●
●

●

●

●
●

●

●

●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●
●
●
●

●

●

●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●
●

●

●

●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●
●

●

●

●
●
●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●
●
● −1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

gp
fs

_a
tla

s.
re

ad
_8

08
gp

fs
_a

tla
s.

re
ad

_9
08

gp
fs

_a
tla

s.
w

rit
e_

80
8

gp
fs

_a
tla

s.
w

rit
e_

90
8

in
te

rf
ac

e.
bo

nd
0.

rx
B

yt
es

_d
er

iv
at

iv
e_

80
8

in
te

rf
ac

e.
bo

nd
0.

rx
B

yt
es

_d
er

iv
at

iv
e_

90
8

in
te

rf
ac

e.
bo

nd
0.

rx
D

ro
ps

_d
er

iv
at

iv
e_

80
8

in
te

rf
ac

e.
bo

nd
0.

rx
D

ro
ps

_d
er

iv
at

iv
e_

90
8

in
te

rf
ac

e.
bo

nd
0.

tx
B

yt
es

_d
er

iv
at

iv
e_

80
8

in
te

rf
ac

e.
bo

nd
0.

tx
B

yt
es

_d
er

iv
at

iv
e_

90
8

io
st

at
.a

vg
.c

pu
.p

ct
_i

dl
e_

80
8

io
st

at
.a

vg
.c

pu
.p

ct
_i

dl
e_

90
8

io
st

at
.a

vg
.c

pu
.p

ct
_s

ys
te

m
_8

08
io

st
at

.a
vg

.c
pu

.p
ct

_s
ys

te
m

_9
08

io
st

at
.a

vg
.c

pu
.p

ct
_u

se
r_

80
8

io
st

at
.a

vg
.c

pu
.p

ct
_u

se
r_

90
8

lo
ad

_a
vg

.fi
ve

_8
08

lo
ad

_a
vg

.fi
ve

_9
08

lo
ad

_a
vg

.fi
ve

_s
to

rm
.a

tla
s

lo
ad

_a
vg

.fi
ve

_s
to

rm
.fe

.a
tla

s.
07

st
or

m
.a

sy
nc

_p
tg

_n
_s

to
rm

.a
tla

s
st

or
m

.a
sy

nc
_p

tg
_o

k_
st

or
m

.a
tla

s
st

or
m

.a
sy

nc
_p

tg
_t

im
e_

st
or

m
.a

tla
s

st
or

m
.a

sy
nc

_p
tp

_n
_s

to
rm

.a
tla

s
st

or
m

.a
sy

nc
_p

tp
_o

k_
st

or
m

.a
tla

s
st

or
m

.a
sy

nc
_p

tp
_t

im
e_

st
or

m
.a

tla
s

st
or

m
.s

yn
c_

st
or

m
.a

tla
s

us
er

_p
er

ce
nt

.c
pu

.s
to

rm
_s

to
rm

.a
tla

s
us

er
_p

er
ce

nt
.c

pu
.s

to
rm

_s
to

rm
.fe

.a
tla

s.
07

us
er

_p
er

ce
nt

.m
em

.s
to

rm
_s

to
rm

.a
tla

s
pe

rc
_m

em
_f

re
e_

80
8

pe
rc

_m
em

_f
re

e_
st

or
m

.a
tla

s

gpfs_atlas.read_808
gpfs_atlas.read_908
gpfs_atlas.write_808
gpfs_atlas.write_908

interface.bond0.rxBytes_derivative_808
interface.bond0.rxBytes_derivative_908
interface.bond0.rxDrops_derivative_808
interface.bond0.rxDrops_derivative_908
interface.bond0.txBytes_derivative_808
interface.bond0.txBytes_derivative_908

iostat.avg.cpu.pct_idle_808
iostat.avg.cpu.pct_idle_908

iostat.avg.cpu.pct_system_808
iostat.avg.cpu.pct_system_908

iostat.avg.cpu.pct_user_808
iostat.avg.cpu.pct_user_908

load_avg.five_808
load_avg.five_908

load_avg.five_storm.atlas
load_avg.five_storm.fe.atlas.07
storm.async_ptg_n_storm.atlas

storm.async_ptg_ok_storm.atlas
storm.async_ptg_time_storm.atlas

storm.async_ptp_n_storm.atlas
storm.async_ptp_ok_storm.atlas

storm.async_ptp_time_storm.atlas
storm.sync_storm.atlas

user_percent.cpu.storm_storm.atlas
user_percent.cpu.storm_storm.fe.atlas.07

user_percent.mem.storm_storm.atlas
perc_mem_free_808

perc_mem_free_storm.atlas

Figure 6: Correlation matrix of the more interesting InfluxDB metrics considering only “bad” days,
with the absolute value of the correlation coefficients greater than 0.6.

metrics used have an intrinsic behavior which is very different in general between the two different
kind of days.

A possible improvement of this analysis can be the definition of the more relevant features
for the discrimination between the two kind of days and used in model construction. In literature
different techniques are proposed for what is called “feature selection” [16].

• Statistical tests can be used to select those features that have the strongest relationship with
the output variable. The scikit-learn library provides the SelectKBest class that can be used
with a suite of different statistical tests to select a specific number of features. One of them
is the chi squared (chi2) statistical test [18]. In this method the chi-squared stats is computed
between each non-negative feature and class. This score can be used to select the number of
features with the highest values for the test chi-squared statistic. The chi-square test measures
dependence between stochastic variables, so this function “weeds out” the features that are
the most likely to be independent of class and therefore irrelevant for classification.

• The Recursive Feature Elimination (or RFE) [19] works by recursively removing attributes
and building a model on those that remain. It uses the model accuracy to identify which

9



P
o
S
(
I
S
G
C
2
0
1
9
)
0
0
3

Towards Predictive Maintenance with Machine Learning at the INFN-CNAF computing centre L. Giommi

Figure 7: Accuracy scores for different ML algorithms using InfluxDB metrics.

attributes (and combination of attributes) contribute the most to predict the target attribute.

• Principal Component Analysis (or PCA) [20, 21] uses linear algebra to transform the dataset
into a compressed form. The PCA procedure produces eigenvectors-eigenvalues pairs where
an eigenvalue tells us how much variance there is in the data in the direction defined by the
eigenvector. The higher each component of the eigenvector is, the more that component is
important in the definition of the direction given by that eigenvector. The eigenvector with
the highest eigenvalue is therefore the principal component.

• A benefit of using ensembles of decision tree methods like gradient boosting (i.e. XGBoost)
or adaptive boosting (i.e. AdaBoost) is that they can automatically provide estimates of fea-
ture importance from a trained predictive model. The importance of a feature is the increase
in the prediction error of the model after we permuted the features values [22]. Generally,
importance provides a score that indicates how useful or valuable each feature was in the
construction of the boosted decision trees within the model. The more an attribute is used to
make key decisions with decision trees, the higher its relative importance.

As already said the algorithms used give almost the same result in terms of accuracy (and also
in terms of area under ROC curve). For this reason, in the case of RFE and feature importance, only
the AdaBoost algorithm was considered as the more performing. In order to make feature selection
from these four different methods, the need arises to create only one summary way to give a final
ranking of the features. The approach adopted is the following. For each one of the four methods
there is a feature ranking and, as if it was a sport competition, a score is assigned from 1st to 10th
position giving the following points (starting from the first): 25, 18, 15, 12, 10, 8, 6, 4, 2, 1. At the
end the final ranking is produced summing up the intermediate scoring. This procedure gives the
feature ranking shown in Table 2.

Here the user_percent.mem.storm_storm-atlas metric comes out in the first position with a
great detachment from the second metric so it can be considered as the main feature to infer that in
the whole system there is a discrepancy in values between good days and bad days . A comparison
between these two different behaviors is shown in Figure 8.

10



P
o
S
(
I
S
G
C
2
0
1
9
)
0
0
3

Towards Predictive Maintenance with Machine Learning at the INFN-CNAF computing centre L. Giommi

Metric Scoring
1 user_percent.mem.storm_storm-atlas 75
2 user_percent.cpu.storm_storm-atlas 37
3 perc_mem_free_storm-fe-atlas-07 36
4 perc_mem_free_808 31
5 interface.bond0.txBytes_derivative_808 25

Table 2: Final scoring of the 5 best metrics obtained by the described feature selection procedure.
See in the text for more details.

(a) (b)

Figure 8: Comparison of the memory usage from the storm user in the storm-atlas machine between
good days (8a) and bad days (8b).

5.2 storm-frontend-server.log

For the storm-frontend-server.log files, the approach used is the same shown for Influx metrics,
but this time the files contain more complex messages. The main elements that may appear in a
row of a log file, which become the columns of the parsed csv files, are: ‘datetime’, ‘thread’,
‘type’, ‘request-id’,‘ DN’, ‘requested token’, ‘num_surl’, ‘IP’, ‘request’ and ‘result’. The ‘thread’
manages the request. The ‘type’ can be INFO, WARN, ERROR, NONE in increasing order of the
critical issue of the message. An INFO message contains general information about the system,
NONE type is related to the configuration of the service. ‘Request-id’ is the identifier of the user
connecting to the service, thus the progress in time of the actions and requests made by the user
can be seen by grepping for the request-id in the log file. ‘DN’ is the distinguished name related
to the user. The ‘requested token’ is the identifier related to the request of the user; through it, the
status of the request can be monitored in the storm-backend.log file and allows the Backend to keep
track all the requests. The ‘num_surl’ is the number of site URLs related to the files on which a
request is done. ‘IP’ is the IP address related to the user that has connected to the service. In the
end, the last elements that may appear are ‘result’ and ‘request’. For each of them there are many
possibilities that will not be explained here.

As said the rate of logging in the storm-frontend-server.log files is very high and thus we
decided to aggregate the behavior of the service at each 15 minutes. For this purpose, the csv file
coming from the parsing operation has to be changed, where its columns will be the ones previously

11



P
o
S
(
I
S
G
C
2
0
1
9
)
0
0
3

Towards Predictive Maintenance with Machine Learning at the INFN-CNAF computing centre L. Giommi

explained plus one column for each kind of ‘type’, ‘request’ and ‘result’ present in the log files.
Some columns will be deleted because not useful anymore (‘thread’ and ‘request-id’), and other
will be changed (‘DN’, ‘IP’ and ‘requested token’). These last ones will not contain anymore
the specific element of string type but a ‘1’ when a DN, an IP or a requested token is inside the
message, otherwise a ‘0’. Finally the ‘one hot encoding’ procedure can be made: the result is that
each message of the log will be converted in zeros and ones, where the ones are related to those
column containing part of that message. At the end, lines aggregating the statistics of the previous
15 minutes are written in the final csv.

The features produced for this file are 53. The ML techniques have been used and, as in the
case of InfluxDB, models with high accuracy (over 0.93) and high area under ROC curve (over
0.96) have been produced. Also here AdaBoost algorithm resulted as the most performing. Then,
the features selection procedure previously shown has been applied, obtaining the results shown in
Table 3.

Metric Scoring
1 BOL status 58
2 Abort request 55
3 num_surl 55
4 Rm 30
5 SRM_INTERNAL_ERROR 25

Table 3: Final scoring of the 5 best features from the storm-frontend-server.log files obtained by
the feature selection procedure.

Here the BOL status (Bring On Line), Abort request and num_surl features are in the first
three positions and they can be considered as the main features to be used to infer that in the whole
system there is a discrepancy in values between good days and bad days. A comparison between
these two different behaviors for the first feature is shown in Figure 9.

(a) (b)

Figure 9: Comparison of the number of BOL status requests between good days (9a) and bad days
(9b).

12



P
o
S
(
I
S
G
C
2
0
1
9
)
0
0
3

Towards Predictive Maintenance with Machine Learning at the INFN-CNAF computing centre L. Giommi

5.3 storm-gridftp-session.log

This log file contains all the information regarding data transfers. In the parsing action, many
columns have been added into the csv file (where the csv file contains a row for each transfer),
that are: the kind of user (atlas, pilatlas, atlasprd), the storage area of the transferred file location
(atlasdatadisk, atlasdatatape, atlasscratchdisk, atlasmctape), the different kinds of failures, the dif-
ferent providers related to main IPs of who connects and the duration of the transfer. Each time a
transfer has one of these information in the log file, a “1” is added to the corresponding column.
A “0” is added otherwise. In order to sum up the behavior of the system every 15 minutes, all the
columns of the resulting csv file will have the sum of the content in the last 15 minutes. About the
“duration” column, it has been substituted by the mean, the maximum, the 50th percentile and the
95th percentile of the transfers duration of the 15 minutes, in addition to the number of transfers.

The features produced for this file are 32. The previously described ML algorithms have been
used and all of them gave good results, with an accuracy over 0.94 and an area under ROC curve
over 0.96. The AdaBoost classifier produced the best score for both the two metrics. Same result
is for both ds-808 and ds-908 GridFTP servers. Then, the features selection procedure previously
shown has been applied, obtaining the results shown in Table 4 for the ds-908 GridFTP server.

Metric Scoring
1 abort 62
2 disk_area_atlasdatatape 45
3 duration_mean 39
4 DN_ADM 37
5 globus_xio: System error in send 30

Table 4: Final scoring of the 5 best features obtained by the feature selection procedure for the
ds-908 GridFTP server.

The abort feature is in the first position in the feature selection procedure, as shown in Table 4,
and it can be considered as the main feature to be used to deduce that in the whole system there is a
discrepancy in values between good days and bad days. A comparison between these two different
behaviors for this feature is shown in Figure 10.

After the exploration of these three different sources (InfluxDB, storm-frontend-server.log,
storm-gridftp-session.log) individually taken, then the correlation matrix of the features taken from
all these sources is computed and it is of great interest for the technicians because it provides a
way to compare elements coming from different sources with a different content and maybe find
unexpected correlations. Here it is not shown because such a detailed analysis is not the scope of
this paper which instead focuses on the more general trends.

6. Conclusions

One of the future goals of CNAF is the implementation of a global predictive maintenance
solution for the site. Since efficient storage systems are an essential component of Tier-1 operations,

13



P
o
S
(
I
S
G
C
2
0
1
9
)
0
0
3

Towards Predictive Maintenance with Machine Learning at the INFN-CNAF computing centre L. Giommi

(a) (b)

Figure 10: Comparison of the number of abort requests between good days (10a) and bad days
(10b).

a good starting point has been identified in the StoRM service. The present work is based on data
coming from this service (and from those related to it) in the form of log files. The log sources are
different and with different information content. A considerable effort has been spent to extrapolate
a usable content from log files that have an inhomogeneous structure. Surely a standardized way
of keeping logging, with defined and clear rules reducing the variability at minimum (i.e. by using
a simple uniform date format for the different sources), would be an essential ingredient for a good
automated system of parsing, but unfortunately at the moment this does not exist at CNAF. Clearly
this is a fundamental part for a center aiming a collecting information from many services in a
structured form so to control the behavior of the global system in a different way with respect to
the actual monitoring of the machines and the manual checks made by technicians every time a
problem occurs.

After having extracted these information, the aim was to use them for the building of ML
models that were able to predict when an anomaly occurs in the system. This paper describes
how the information has been used to show correlation of features, to show which of those fea-
tures can be considered as the main ones to define the critical state of the system, and to build
ML models that are able to say which is the probability that the system is in a critical state. It
means that a built ML model tells us which is the health status of the system, every 15 min-
utes, in an automated way. Regarding the second point, the features found for the log files used
are: user_percent.mem.storm_storm-atlas for the Influx Database, BOL status, Abort request and
num_surl for the storm-frontend-server.log files, abort for the storm-gridftp-session.log file (related
to the ds-908 GridFTP server).

This work has been performed considering data of a particular period but, despite the specific
critical situation, the procedure is general and usable for any kind of situation. Moreover the
obtained result can be partly exploited for each problem (at least similar ones) because the used
features describe the overall system behavior, and therefore whenever a problem occurs the system
shows a peculiar behavior that can be generalized in some way.

The work performed is preliminary and one of the reason is that not all the available log sources
have been used. In fact, the monitoring.log, storm-backend.log, heartbeat.log and storm-backend-
metrics.log files have not been used at the moment and they can surely give a whole description

14



P
o
S
(
I
S
G
C
2
0
1
9
)
0
0
3

Towards Predictive Maintenance with Machine Learning at the INFN-CNAF computing centre L. Giommi

and a whole knowledge of the system for the ML purpose. Other obvious improvements could
be achieved collecting data for more critical period in order to test the ML model produced and
eventually create other models for different cases.

References

[1] CNAF. https://www.cnaf.infn.it/en/institute/

[2] StoRM. http://italiangrid.github.io/storm/

[3] E. Corso, S. Cozzini, A. Forti et al., StoRM: A SRM solution on disk based storage system, in
Proceedings of the Cracow Grid Workshop 2006 (CGW2006), Cracow, Poland, 2006.

[4] A. Carbone, L. dell’Agnello, A. Ghiselli et al., Performance Studies of the StoRM Storage Resource
Manager. 3rd IEEE International Conference on e-Science and Grid computing (eScience2007),
Bangalore, India, December 2007, pp. 423-430.

[5] L. Magnoni, R. Zappi and A. Ghiselli, StoRM: A flexible solution for Storage Resource Manager in
grid. IEEE Nuclear Science Symposium Conference Record (2008), pp. 1971-1978.

[6] R. Zappi, Storage Resource Managers: Interface and SRM services. Presentation at the INFN
Training School for Grid User, November 2007.

[7] R. Zappi, E. Ronchieri, A. Forti et al., An Efficient Grid Data Access with StoRM. Data Driven
e-Science, Springer New York (2011), pp. 239-250.

[8] StoRM: a Manager for Storage Resource in Grid.
http://italiangrid.github.io/storm/documentation/functional-description/1.11.2/

[9] StoRM System Administration Guide.
http://italiangrid.github.io/storm/documentation/sysadmin-guide/1.11.14/

[10] What is the ELK Stack?. https://www.elastic.co/elk-stack

[11] T. Diotalevi et al., Collection and harmonization of system logs and prototypal Analytics services with
the Elastic (ELK) suite at the INFN-CNAF computing centre. In this conference.

[12] GridFTP. http://toolkit.globus.org/toolkit/docs/latest-stable/gridftp/

[13] S. Bovina, D. Michelotto, G.Misurelli, CNAF Monitoring system. CNAF Annual Report (2015), pp.
111-114.

[14] Overview of ATLAS PanDA Workload Management. J. Phys.: Conf. Ser. 331 072024

[15] AGIS: Integration of new technologies used in ATLAS Distributed Computing, J. Phys.: Conf. Ser. 898
092023

[16] Feature Selection For Machine Learning in Python.
https://machinelearningmastery.com/feature-selection-machine-learning-python/

[17] scikit-learn. https://scikit-learn.org/stable/

[18] sklearn.feature_selection.chi2.
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.chi2.html

[19] sklearn.feature_selection.RFE.
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFE.html

[20] I. T. Jolliffe, Principal Component Analysis. Springer-Verlag, New York (2002).

15



P
o
S
(
I
S
G
C
2
0
1
9
)
0
0
3

Towards Predictive Maintenance with Machine Learning at the INFN-CNAF computing centre L. Giommi

[21] M. Arnaz and G. Robert, PCA-Based Feature Selection Scheme for Machine Defect Classification.
IEEE Transactions on Instrumentation and Measurement (2005). 53(6), pp. 1517 - 1525.

[22] Feature Importance. https://christophm.github.io/interpretable-ml-book/feature-importance.html

16


