
P
o
S
(
I
S
G
C
2
0
1
9
)
0
2
0

The BondMachine toolkit: Enabling Machine
Learning on FPGA

Mirko Mariotti∗ ab, Loriano Storchi bc, Daniele Spiga b, Davide Salomonie, Tommaso
Boccali f , Daniele Bonacorsid

aDipartimento di Fisica e Geologia, Universitá degli Studi di Perugia, Via Pascoli, 06123
Perugia, Italy

bINFN sezione di Perugia, Via Pascoli, 06123 Perugia, Italy
cDipartimento di Farmacia, Universitá degli Studi G. D’Annunzio, Chieti, Italy
dDepartment of Physics and Astronomy, University of Bologna, Viale Berti Pichat 6/2, 40127
Bologna, Italy

eINFN CNAF , Viale Berti Pichat 6/2, 40127 Bologna, Italy
f INFN sezione di Pisa, largo Pontecorvo 3, 56127 Pisa, Italy
E-mail: mirko.mariotti@unipg.it, loriano@storchi.org,
daniele.spiga@pg.infn.it

The BondMachine (BM) is an innovative prototype software ecosystem aimed at creating facili-
ties where both hardware and software are co-designed, guaranteeing a full exploitation of fabric
capabilities (both in terms of concurrency and heterogeneity) with the smallest possible power
dissipation. In the present paper we will provide a technical overview of the key aspects of the
BondMachine toolkit, highlighting the advancements brought about by the porting of Go code in
hardware. We will then show a cloud-based BM as a Service deployment. Finally, we will focus
on TensorFlow, and in this context we will show how we plan to benchmark the system with a
ML tracking reconstruction from pp collision at the LHC.
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1. Introduction

Future systems will be characterized by the presence of many computing cores in a single
device, by heterogeneous architectures built to optimize power and "silicon" consumption as much
as possible and by re-configurable hardware technologies. These concepts have been demon-
strated, both in software programming and hardware evolution, by the multi-core [1], GPGPU [2],
OpenCL [3] and re-programmable logic devices [4] which populate the spectrum from small de-
vices up to large-scale data centers. A key to the success in the era of hybrid computing will be
how coherently HW/SW systems will take all these components into account.

The BondMachine (BM) is an innovative prototype software ecosystem aimed at creating fa-
cilities where both hardware and software are co-designed, guaranteeing a full exploitation of fabric
capabilities (both in terms of concurrency and heterogeneity) with the smallest possible power dis-
sipation. The disruptive innovation of the BM is to provide a new kind of computer architecture,
where hardware dynamically adapts to the specific computational problem, rather than being static
and generic, as in standard CPUs synthesized in silicon.

In order to exploit the dynamic nature of the BM, its main goal is to create the described
heterogeneous and flexible architectures on top of re-configurable technology devices (such as
FPGAs) [4]. Moreover, the overall BM vision is based on the reduction of the number of hard-
ware/software layers, which as a byproduct guarantees a simpler software development. This is
precisely why the BM project has been thought as a complete re-configurable computing ecosys-
tem, that starting from a high-level description of a computational task creates both the hardware
and the software representing the optimal solution.

The BM uses Go [5] as main language for the codesign. Its concurrency primitives can be
perfectly mapped to the BM architecture and they allow to write concurrent applications on FPGA
with a small overhead compared to the HDL code. The flexibility of the BM makes possible
the implementation of any computing system, ranging from networks of small agents, like IoT
(Internet of Things) [6], to high performance devices for ML (Machine Learning) [7] or real time
data analysis, and even systems that mix all these different characteristics together.

In the context of the HEP domain [8], we are developing new BM components to deploy
complex AI systems on hardware, providing a high-level mechanism to translate into silicon Deep
Learning networks, created via standard Tensorflow [9] and Keras toolkits [10]. Regarding the
deployment of models, the BM provides several solutions, such as a standalone FPGA, accelerators
coupled to workstations, as well as a BM as a Service running on hybrid Clouds [11].

2. BondMachine architectural overview

The aim of the BondMachine (BM) project is to implement a computing system to enable a
real and full exploitation of the underlying hardware. This is a key to the success in the era of
hybrid computing [12]. In order to achieve this objective the BM has been designed to create a
heterogeneous and flexible architecture on top of FPGAs [4]. Moreover the overall vision is based
on a reduction of the number of hardware/software layers which guarantees a simpler software
development. That is the BM project has been thought as a complete re-configurable computing
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ecosystem, that starting from a high-level description of the task creates both the hardware and the
software to optimally solve the computational problem.

The two architectural pillars of the BM are computing elements (processors) and non-computing
elements (for example memories, channels, barriers). The latter are meant to be shared among pro-
cessors. Finally thanks to a custom network protocol many BondMachines can be interconnected
together, therefore building heterogeneous multi-core systems or even cluster of multi-cores.

The flexibility of the BM makes possible the implementation of any computing system ranging
from networks of small agents, like IoT (Internet of Things) [6], to high performance devices for
ML (Machine Learning) or real time data analysis, and even systems that mix all this different
characteristics together.

The BM can interact with standard Linux workstations both as a special purpose hardware
accelerator or as part of a computer/BM hybrid clusters. As a final and important remark we want
to stress that, regardless of the scenario considered, the hardware/software generation always starts
from a high level description of the problem.

2.1 Components

The present project is aimed to build a full re-configurable computing ecosystem made of
several components. In the following we will report and describe all these components. The Archi-
tecture Description (AD), that is a full specification of the computing and non-computing shared
objects which constitute the BondMachine (BM). The BM handling tools: a set of standard com-
puter programs to manage any aspect of the BMs starting from their creation up to the HDL code
production. The BM front end tools: a set of programs to use the BM, that is a set of API, a com-
piler and other fundamental tools such as a web interface, translators from Boolean expressions,
mathematical expressions and so on.

Figure 1: Template of the block diagram of a BondMachine design on an FPGA.
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The image (Fig.1) shows a template of the block diagram of a BondMachine design on an
FPGA. The BM architecture changes in order to satisfy the specific computational problem, so
there is not a single FPGA design. Instead the tools that generate the architectures should be
thought as firmware generators.

The BondMachine (BM) architecture consists of the full specification of the interconnections
among Connecting Processors (CPs) and Shared Objects (SOs), being non-computing units, that
can be shared among the various CPs. The main features of the BM architecture are the possibility
to fully configure: i) the number and type of the processor cores, ii) the number of inputs and
outputs, iii) the topology of the interconnections between processors and iv) the number and type
of the Shared Objects used by each processor.

In the following we will detail about the cited components of the architecture.

2.1.1 Connecting Processors

The Connecting Processor is the computing core of the BondMachine. One of the main capa-
bility of a Connecting Processor, as the name suggest, is to be configured in such a way that can
be easily connected to other processors and to any Shared Objects. CPs are as simple as possible,
specialized and optimized to perform a single task. In fact any CP can be created with a different
number of registers, different number of I/O registers and different instruction set (i.e. opcodes)
with respect to the other ones.

The implemented opcodes are chosen among a rich set of possibilities, not all the possible
opcodes are implemented on every CP. The implemented opcodes consist of the classical ones such
as: set register rset, clear register clr, conditional jump j, je, jz, increment/decrement register add,
dec, inc, copy register cpy, read input register i2r, write output register r2o. In addition we added
some dedicated opcodes for controlling the Shared Objects such as operation related to the Internal
and Shared Memory (r2m, m2r, s2r, r2s) as well as to Channel and Barrier management (wrd,
wwr, chc, chw).

Registers within a CP are all general purpose and are named r0 ... rR, where R is not a constant
but it can change between the various CPs. In addition, a CP has two types of specialized registers:
the input registers, named i0 ... iN, that can only be read by the CP, while the output registers, o0
... oM , can only be written. The registers are used to connect different CPs and an input register
of a CP can only be connected to the output register of another CP. Moreover, an input register can
also be used as BM input, and similarly an output register may be used as the BM output.

Finally it is important to report as every CP has two kind of memories. The ROM, that may
contain only the instructions set of program to be executed by the processor, and the RAM, that is
the local storage for the processor. Clearly the RAM may contain both the instructions set of the
program as well as the application data.

2.1.2 Shared Objects

These are non-computing objects shared between all or some of the CPs. Several kind of
objects can be implemented to increase the processing capability and functionality of the BMs
improving the high-speed synchronization and communication between tasks running on separate
CPs. Three kinds of objects have been currently implemented: Channels, Shared Memories and
Barriers. Clearly other kind of components can be easily added in the future.
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Figure 2: An example of layers in a BondMachine system

In the Figure 2 we are reporting a scheme of a complete example of the BondMachine architec-
ture. Specifically it consists of two inputs and tree outputs interconnected between the input/output
registers of the processors. One can easily see as the shared objects, such as memory, channels and
barriers, are connected to the various processors.

Channels Channels are hardware message queues acting as conduits between two CPs. Follow-
ing the concurrency model in Communicating Sequential Process (CSP) [13] each processor has a
dedicated interface to the Channel and can send or receive data to and from it.

Shared Memory Shared Memory consists of RAM shared between one or more CPs. In a Shared
Memory system, every processor has direct access with its dedicated interface (data input/output,
address, write and enable signals), that is: it can directly load or store data to any memory address.
The system is able to synchronize the read/write processors’ requests without controlling the spec-
ified address and the conflicts. The depth of the RAM is calculated considering the implemented
task of each CP and the value of allocated memory address. Clearly the depth of each Shared
Memory object can be individually configured.

Barrier A Barrier is an object used to synchronize Concurrent Processors on a shared architec-
ture. Upon reaching a barrier, a processor must wait until all the other processors reach the same
barrier. The processors are stalled waiting for the others and during this time they are in a idle state.
The implementation of the barrier mechanism uses a dedicated opcode named hit and a timeout
counter to define a limit for the task completion.

2.1.3 Network Component

An interesting feature of the project is that several BondMachines can be interconnected via
custom protocol, that is: a distributed cluster of heterogeneous multi-core machines can be built in
such a way. To do so every BM joining a cluster has a network component within the FPGA that
extends the same logic to other FPGAs within the cluster.

BMs may communicate using a native protocol called EtherBond. Its purpose is to replicate
the electronic behavior of BMs registers and to extend it over the device boundaries. In other
words clusters of BMs may be created and their behavior is driven by the same rules of separate
BM devices. The main objective is then to handle devices and cluster in the same way. Interestingly
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the EtherBond protocol has been ported to Linux, so that BMs can now communicate also with a
standard PC software.

3. Toolkit components

The complexity of the BondMachine architecture can be managed using a set of software tools.
These tools allow to build a specific architecture as a function of the task one want to perform, to
easily modify the architecture, to simulate the behavior and finally to check the functionality with
the aim to generate the Hardware Description (HDL) code for a programmable device, i.e. a FPGA
device.

The full set of tools can be subdivided in two different categories: i) the CP builder: that
manages the configuration parameters of all the CPs (procbuilder), and ii) a BM builder: that
manages the interconnection between the CPs and the SOs (bondmachine). Moreover, all the tools
share the capability of using the generated BM architecture, so that the full architecture may be
emulated directly on a workstation, using the so-called simbox framework, without the explicit
need of a FPGA device.

3.1 The Bondgo compiler

Bondgo is the compiler, that starting from an high level language, in this case Go, produces the
assembly code of the architecture. The generated assembly code may be finally assembled with the
procbuilder tool, this will generate the binary code for a CP. Unlike other compilers, Bondgo may
create the assembly code so that a given processor can directly run it, and also creates a specific
CP optimized to run the code. That is, the Bondgo creates both the hardware and the software
optimized for the hardware. The resulting architecture will be generated with the minimal needed
resources and will be highly specialized.

Moreover Bondgo is able also to handle the concurrency of the source code by creating, if
needed, a multi-cores BM, that is it can create a new CP in the BM every time a Go-routine is
encountered (clearly each CP is optimized to run the code produced).

Figure 3: A BM built starting from two Go-routines sending an uint8 data value back and forth
through I/O registers created via bondgo.Make
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In the following we report an example of the BondMachine. This is a trivial example yet it
shows well the basic capabilities of the BondMachine architecture and ecosystem. Two Go-routines
sending an uint8 data value back and forth through I/O registers (created with bondgo.Make). The
pong go-routine also increases the value by one before sending it back. Once the code has been
compiled with Bondgo the result is a multi-core BondMachine as shown in the Figure 3.

Finally within Bondgo the developer can choose which routine (and thus which CP) runs on
which FPGA, naturally allowing for the possibility of building autonomous clusters of multi-cores.
Indeed starting from the previous example and just changing the device_0 label with device_1, the
compiler is instructed to put the two go-routines on different BondMachines. Numerically the result
will be the same but now we will use a cluster of two BondMachines connected via the EtherBond
protocol. Interestingly, after a simple and quick change, a multi-core system is transmuted in a
distributed system as shown in Figure 4:

Figure 4: A BM built starting from two Go-routines sending an uint8 data value back and forth
through I/O registers using a cluster of two BondMachines connected via the EtherBond protocol

4. Machine Learning with the BondMachine

The interconnected heterogeneous processors model, on which the BondMachine design is
based, is clearly the perfect framework to run modern workloads like Machine Leaning (ML) and
Computational Graph. To exploit this opportunity we developed several higher level tools. All of
them share the capability to generate BondMachines starting from different sources, allowing the
creation of trained graphs or neural networks in the form of HDL code. While the final product of
all the cited tools is a BM architecture, the way each tool processes its own input to reach the final
goal it is different and will be illustrated in the following,

4.1 Neuralbond

Neuralbond is an application that models a neural network [14] over BondMachines. The final
result of the process in a device composed by many CPs acting as neuron-like computing units.
The neuralbond approach it is API-based, so that its Go library can be used directly in the code to
build a neural-like BondMachine architecture. An example of the library is reported in fig. 5.
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Figure 5: A Neuralbond usage example: The code on the left creates the multi-layer neural network
shown on the right

4.2 Tensorflow Translator

TensorFlow [9] is a software library for data-flow from Google, it is used for machine learning
applications such as neural networks. In the last few year it has become very popular and is a sort
of standard de facto in ML. Computation in TensorFlow is performed by creating a computational
graph that is a network of nodes, with each node known as an operation, running some function.
The nodes of the graph are connected via tensors that are n-dimensional matrices. TensorFlow can
save trained computational graphs in the form of file containing protocol buffers data. The devel-
oped translator may read these files and by descending the graph it creates one or more processor
for every encountered node. Whenever a tensor is found, it is translated into a set of I/O registers
among the respective node/processors.

4.3 NNEF composer

Neural Network Exchange Format (NNEF) [15] is a standard from the Khronos group that
encapsulates a complete description of the structure, operations and parameters of a trained neural
network. A NNEF description is independent from the training tools used to produce it and the
inference engine used to execute it. Indeed, its main purpose is to enable the easy transfer of
trained networks among frameworks, inference engines and devices.

The BondMachine NNEF Composer we developed is able to read a model file and to parse it
to produce the related architecture accordingly, and finally to build a multi-core BondMachine. The
adoption of NNEF has several advantages over the protocol buffer approach. Firstly every frame-
work that is able to export a NNEF format file can be directly used to produce models workable
into a BM. Equally obviously being a NNEF model a text file it is human readable, thus can be
easily decoded and modified.

5. BondMachine computing accelerator

All the previously described ways of building BM architectures can be used equivalently on a
single FPGA or on a clusters of FPGAs. In order to use a BM as a hardware accelerator attached
to a Linux workstation we developed a software library to create the interface between the FPGA
fabric and the Linux applications. Along with the developed C software library [16] a special-
purpose hardware it is clearly needed. It can be either a chip that has a programmable logic (PL)
subsystem alongside a standard processor (PS) [17], or a board with an FPGA that can be directly

7



P
o
S
(
I
S
G
C
2
0
1
9
)
0
2
0

Mirko Mariotti

inserted in a computer bus (like for example a PCI express bus). In figure 6 an example of the first
scenario is reported.

Figure 6: Hybrid chip accelerators: example of a Zynq chip with AXI4 protocol

Hence, as partially reported in figure 6, while a BM architecture is flashed on the PL part of
the chip, on the processor (PS) part a standard application is linked against the BondMachine API
C library developed. Clearly on the FPGA a firmware component we developed is responsible of
managing the BM I/O registers dedicated to the accelerator interface. The interaction between PS
and PL is performed within the chip itself and the BM API library can access memory-mapped
components of the interface and send data to the accelerator back and forth.

Figure 7: PCIe accelerator example

The second scenario we cited if the the FPGA on PCI express boards that is reported in figure 7.
The scheme is similar to the previous one with an exception. Since there is no direct communication
mechanism among the FPGA and the processor a PCI express driver is needed on the workstation
kernel to interface it with the accelerator via the PCI bus.

5.1 Cloud accelerators

FPGA can also be used in a cloud context. It is either possible to buy FPGA computing
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resource from commercial cloud providers or to create a private cloud infrastructure [18] with
FPGA enabled machines.

Figure 8: A BM Cloud accelerator workflow

In figure 8 we are reporting a workflow of a BM accelerated VM application starting from one
the previously described methods to produce ML accelerators. Firstly a BM firmware is created
using one of the described tools or it is taken from a library of pre-built accelerators. Once the
firmware is available the FPGA VM can be started and the hardware deployed on it. At this point
the VM will contains the BM architecture that is ready to run the BM software, after that the
application is ready to be used.

Due to the dynamical nature of the BM architecture, it is possible to put the whole process in
the form of a BM accelerator as a service (BMAaaS). Specifically, given an high level description of
a computational problem, either in the form of graph or Go source code, a first cloud service builds
the accelerator and a second one starts a FPGA enabled VM to run an accelerated application.

6. Future work and benchmarks

ML and DL have become a popular solution also in High Energy Physics [19]. The stan-
dard software stack used to train and exploit DL based systems consists of Tensorflow used via a
Keras abstraction. While Keras presents a simplified interface able to hide most of the complex-
ity, Tensorflow is the real engine, able to handle tens of thousands inputs. Tensorflow graphs are
inherently not serial in processing, thus performing better than standard sequential algorithms for
complex problems.

A case where DL is currently heavily tested is the reconstruction of tracks into complex pp
collisions at LHC. Track reconstruction is the most powerful tool when probing complex event
topologies, and is currently attempted by combining the signals from large silicon detectors, able to
flag the passage of each charged particle on a series of thin silicon layers in the presence of a strong
magnetic field. Since O(1000) different tracks are expected per event at HL-LHC (2026+), the
problem is essentially combinatorial and its computational performance scale worse than linearly
with the number of tracks.

A solution is currently being developed using CNNs implemented via Keras on a TensorFlow
back-end, on large systems using GPGPU. While the results are promising, the utilization of the

9



P
o
S
(
I
S
G
C
2
0
1
9
)
0
2
0

Mirko Mariotti

solution is limited at offline studies, since requires a large computing power (dissipating > 200 W
per machine) and cannot be put close to the detectors. An interesting test would be to try and move
the network to hardware with lower power dissipation, and able to survive closer to the detectors.

The test we want to attempt is to use the BondMachine ML capability in order to implement
on FPGA a trained network, which can output track seeds. The approach with respect to GPGPUs
is largely different in the power dissipation, which is important make the computation at the edge.

Collider experiments already use extensively FPGAs at trigger level, using the low power pro-
file and higher radiation hardness. Using the same infrastructure, it is feasible to test BondMachine
created networks on real / realistic data streams, without the overhead of programming trigger
algorithms in xHDL code and instead profiting from DL techniques in such environments.

7. Conclusion

The BondMachine is a new kind of computing device made possible in practice only by the
emerging of re-programmable hardware technologies such as FPGA. The main goal of our project
is the construction of a computer architecture where the hardware is shaped by the problem one
aims to solve. Clearly this approach bring to an increased computing power and flexibility yet
keeping a standard way of programming it.

Following these reasons, the compiler is not anymore a software that translates an high level
source code to a general purpose machine binary code, it becomes a software that creates the
architecture, the binary code and the HDL code to run on FPGA devices.

Finally we want to underline as whenever high performances are required, we expect that the
reduction of the number of hardware/software layers will surely lead to an increase of the overall
performances. The fact we will use a register machine (processor), and not for example directly the
FPGA, means that will be relatively easy to import well known and already used computer science
techniques on a BM.

Respect to any other classic computational system in the BM project the optimization process
is extended up to the hardware level. Indeed if the program does not expect the processor to
implement a particular operation, the resulting hardware will not have that instruction. Thus we
are able to obtain a software/hardware system completely shaped by the given Computational task
one aims to solve.

Over the abstraction of the BM it is possible to create a full computing Ecosystem, ranging
from small interconnected IoT devices to Machine Learning accelerators.
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