
P
o
S
(
I
S
G
C
2
0
1
9
)
0
2
7

Collection and harmonization of system logs and
prototypal Analytics services with the Elastic (ELK)
suite at the INFN-CNAF computing centre

T. Diotalevi∗
University of Bologna and INFN, Italy
E-mail: tommaso.diotalevi@studio.unibo.it

A. Falabella, B.Martelli, D. Michelotto, L. Morganti

INFN-CNAF, Italy

D. Bonacorsi, L. Giommi, S. Rossi Tisbeni

University of Bologna and INFN, Italy

The distributed Grid infrastructure for High Energy Physics experiments at the Large Hadron
Collider (LHC) in Geneva comprises a set of computing centres, spread all over the world, as part
of the Worldwide LHC Computing Grid (WLCG). In Italy, the Tier-1 functionalities are served by
the INFN-CNAF data center, which provides also computing and storage resources to more than
twenty non-LHC experiments. For this reason, a high amount of logs are collected each day from
various sources, which are highly heterogeneous and difficult to harmonize. In this contribution,
a working implementation of a system that collects, parses and displays the log information from
CNAF data sources and the investigation of a Machine Learning based predictive maintenance
system, is presented.

International Symposium on Grids & Clouds 2019, ISGC2019
31st March - 5th April, 2019
Academia Sinica, Taipei, Taiwan

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:tommaso.diotalevi@studio.unibo.it 


P
o
S
(
I
S
G
C
2
0
1
9
)
0
2
7

Log collection and Analytics with the ELK suite at the INFN-CNAF computing centre T. Diotalevi

1. Introduction

The Worldwide LHC Computing Grid (WLCG) is a global computing infrastructure with the
mission of providing computing resources to store, distribute and analyse the data generated by
the Large Hadron Collider (LHC), making the data equally available to all countries, regardless of
their physical location. Computing infrastructures through which Grid services operate are
hierarchically classified into Tiers according to the kind of services they offer.
Since 2003, the Italian Tier-1 for the High Energy Physics experiments is hosted at the Bologna
INFN-CNAF Data Center [1], providing the resources, support and services needed for data
storage and distribution, data processing and analysis as well as the production of simulated
(’Monte Carlo’) data, representing also a key computing facility for many non-LHC communities,
making it one of the most important centers for distributed computing in Italy.
A key challenge, therefore, is the modernization of the center to be able to cope with the
increasing flux of data expected in the near future e.g. with the new phase of operations of the
High-Luminosity LHC [2]. These high-level standards of operation require a continuous work
towards a full understanding of service behaviours and a constant seek for higher level of
automation and optimization. Data centers worldwide are now witnessing the use of Artificial
Intelligence (AI) solutions pushing them into a new phase, in which tasks traditionally managed
by operators could be more efficiently managed by human-supervised machine decisions.
Besides, CNAF collects a large amount of logs every day from various sources, which are highly
heterogeneous and difficult to harmonize: such log data is archived but almost never used, except
for specific internal debugging and monitoring operations. This contribution, together with the
implementation of a system that collects, parses and displays the log information from CNAF data
sources, undertakes the investigation of a Machine-Learning-based predictive maintenance
system, moving away from a preventive replacement of equipment, which is highly expensive and
far from optimal efficiency.

2. The Elastic Stack

In order to create an indexed system with structured information from CNAF system logs,
the Elastic Stack [3] has been chosen. The Elastic Stack is the union of three open source project
developed by the Elastic company [4]: Elasticsearch [5], Logstash [6] and Kibana [7]. As shown in
Figure 1, logs coming from different services and different nodes are firstly collected into a single
stream by a platform called Beats [8], then they are aggregated and processed by Logstash, indexed
and stored via the Elasticsearch search engine and finally visualized by the Kibana user interface.
In the following, a brief description of these components is given.

2.1 Beats

Beats is the platform that handles the shipment of data coming from different sources.
Different shippers exist depending on the kind of data that needs to be moved: Filebeat for log
files, Metricbeat for metrics, etc. The installation of such services occurs directly on the servers
that contain data and, for this reason, is fast and lightweight. In case the information collected
from Beats is unstructured, data is shipped to Logstash for further transformation and parsing.

1



P
o
S
(
I
S
G
C
2
0
1
9
)
0
2
7

Log collection and Analytics with the ELK suite at the INFN-CNAF computing centre T. Diotalevi

Figure 1: Workflow of the Elastic Stack log ingestion and processing.

2.2 Logstash

Logstash is an open source, server-side data processing pipeline that ingests data from a
multitude of sources simultaneously, transforms them, and then sends them to a central processing
engine (e.g. Elasticsearch). Since data is often scattered across many systems in many formats,
Logstash allows to ingest logs, metrics, web applications, etc. in a continuous, streaming fashion.
As data travel from source to source, as shown in Figure 2, Logstash filters parse each event,
identify named fields to build structure, and transform them to converge on a common format for
easier, accelerated analysis. In this regard, Logstash dynamically transforms and prepares your
data regardless of its format or complexity using different filters (e.g. grok filters [9] to derive
structure from unstructured data, or geo filters to locate geographical coordinates from IP
addresses). Data is then ready to be process by Elasticsearch, which is the embedded service
provided by Elastic (this is not the only existing solution, e.g. Apache Kafka or MongoDB for
logs data and InfluxDB for metrics data).

Figure 2: Logstash pipeline.

2.3 Elasticsearch

Elasticsearch is the central component of the Elastic Stack with a distributed search and
analytics engine capable of solving a growing number of use cases. Using a RESTful API
architecture [10], it allows to perform and combine many types of searches - structured,
unstructured, geo, metric - using a Lucene querying syntax [11]. Created by Shay Banon in 2004,
it was developed to provide a scalable search engine and a distributed indexing system, capable of
replicating and routing data into different shards spread across the entire cluster.
Elasticsearch, currently, has been adopted and is running in several companies and organizations
like Mozilla, GitHub, Netflix, Wikimedia, and in scientific endeavours (e.g. CERN).

2



P
o
S
(
I
S
G
C
2
0
1
9
)
0
2
7

Log collection and Analytics with the ELK suite at the INFN-CNAF computing centre T. Diotalevi

2.4 Kibana

Kibana is an open source data visualization plugin for Elasticsearch. It provides visualization
of the indexed content of an Elasticsearch cluster. Using the embedded user interface, users can
create bar, line and scatter plots, or pie charts and maps based on large volumes of data. Kibana
also provides several additional features, such as developer tools for advanced interactions with the
Elastic Stack e.g. a console able to interact with the REST API of Elasticsearch in a cURL-like
syntax. Some features are not included in the basic licence given by Elastic, but require a premium
licence purchase: this allows users to explore anomalies in time series data with unsupervised
Machine Learning features, which are described in more detail in the following sections.

3. Managing storage resources on Grid

The WLGC main mission, since the very beginning, is the capability to share data and
resources over a wide-area network across several organizational domains. The current Grid
infrastructure, therefore, has to face multiple heterogeneous storage and file system in order to
manage, replicate and access files in a distributed system. Moreover, high performance
disk-storage solutions have become increasingly important to deal with the large I/O throughput
required by the High Energy Physics (HEP) community for both data analysis and Monte Carlo
simulations.
Given such requirements, the HEP Grid community has developed and implemented the Storage
Resource Manager (SRM) interface [12]. From one side a client can request the SRM to reserve
space and manage files and directories; from the other side, SRM is able to dynamically decide
which files to keep inside the storage space and which to remove e.g. to free some disk space.
SRM relies on some basic concepts on space and files. A file can be volatile, permanent or
durable. A volatile file is temporary with a lifetime associated, deleted by a garbage collector of
the SRM. A permanent file can only be removed by the owner. A durable file has a lifetime
associated with it, but can be removed by both the garbage collector and the owner.
In Grid, a file is identified in several ways: the Logical File Name (LFN) is the user friendly name,
often user-defined. The Storage URL (SURL) points to the physical stored version of a file on a
grid storage element. The Transport URL (TURL) is an URL issued by SRM for a SURL which
can be used to retrieve or store data, e.g. with GridFTP. Finally the file catalog is the grid
middleware server which maps LFNs to SURLs i.e. tracks the real physical locations of logical
file names.
Some implementation of SRM service are dedicated to specific storage system e.g. SRM on
CASTOR at CERN [13] and SRM on dCache [14].

3.1 The StoRM Storage Resource Manager

StoRM is a Storage Resource Manager that relies on a parallel file system or a standard Posix
file system backend i.e. from high performance parallel file systems like GPFS (from IBM) [15].
StoRM provides advanced SRM functionalities to dynamically manage space and files according
to the user requirements, specifying the desired lifetime and allowing for advance space
reservation and a different quality of service provided by the underlying storage system. StoRM

3



P
o
S
(
I
S
G
C
2
0
1
9
)
0
2
7

Log collection and Analytics with the ELK suite at the INFN-CNAF computing centre T. Diotalevi

takes advantage from the file system security mechanisms to ensure access to data in a secure way.
Figure 3 shows the role of StoRM inside a site.
StoRM has a multilayer architecture made by two main components: the front-end (written in
C/C++), and the back-end (written in Java).
The front-end(s) exposes the SRM web service interface, manages user authentication and stores
the requests data into a database. The back-end, instead, is the core of StoRM service, taking care
of executing all the synchronous and asynchronous SRM functionalities. It is responsible of the
management of file and space metadata, it enforces authorization permissions on files and it
interacts with other Grid services. Moreover, the back-end is able to use advanced functionalities
provided by the file system (for example by GPFS and XFS) to accomplish space reservation
requests.
Currently, StoRM is adopted in the context of WLCG infrastructure in various data centers,
including the Italian Tier 1 at the CNAF-INFN institute. In order to satisfy the high availability
and scalability requirements coming from the HEP community, StoRM can be deployed in a
clustered configuration, with multiple instances of front-end and back-end services and with a
dedicated DBMS installation: multiple front-end instances can be deployed on separate machines
and configured to work on the same database and the same back-end service. In Figure 4, a sketch
of this architecture is shown.

Figure 3: StoRM role in a cluster site.

4. StoRM Logging information

StoRM services produce a huge quantity of log information, with different levels of verbosity
that are stored in different files.

4.1 StoRM Frontend Logging

The Frontend (FE) logs information on the service status and SRM requests received and
managed by the process. Different levels of logging are supported such as ERROR, WARNING,
INFO, DEBUG that can be set from dedicated parameters in a configuration file.

4



P
o
S
(
I
S
G
C
2
0
1
9
)
0
2
7

Log collection and Analytics with the ELK suite at the INFN-CNAF computing centre T. Diotalevi

Figure 4: Schematic representation of the StoRM architecture.

storm-frontend-server.log

The Frontend log file named storm-frontend-server.log is placed in the /var/log/storm directory.
At start-up time, the FE prints here the whole set of configuration parameters, this can be useful
to check desired values. When a new SRM request is managed, the FE logs information about
the user subject name, community group and role identifiers as well as several other details of the
request parameters, as shown in Figure 5.

Figure 5: storm-frontend-server log line example.

monitoring.log

The monitoring service, if enabled, provides information about the operations executed within
a certain time frame, writing them to file as shown in Figure 6. This amount of time (called
Monitoring Round) is configurable and its default value is 1 minute. At each Monitoring Round,
a single row is printed in the log. This row reports both information about requests that have been
performed in the last Monitoring Round and information considering the whole FE execution time
(Aggregate Monitoring). Information reported are generated from both Synchronous (operations
that return the control to the client when the request has been executed) and Asynchronous requests
(that return the control as soon as the request has been accepted by the system) and tell: how many
requests have been performed in the last Monitoring Round, how many of them were successful,
how many failed, how many produced an error, the average execution time, the minimum execution
time and the maximum execution time.

4.2 StoRM Backend Logging

The Backend (BE) log files provide information on the execution process of all SRM requests.
Backend logging is based on logback framework. Logback provides a way to set the level of

5



P
o
S
(
I
S
G
C
2
0
1
9
)
0
2
7

Log collection and Analytics with the ELK suite at the INFN-CNAF computing centre T. Diotalevi

Figure 6: monitoring log line example.

verbosity depending on the use case. The level supported are FATAL, ERROR, INFO, WARN,
DEBUG.

storm-backend.log

This log file contains all the information about the SRM execution process, error or warning.
At start-up time, the BE logs here all the properties value, which can be useful to check
parameters effectively adopted by the system. After that, at the INFO level, the BE logs for each
SRM operation who has requested the operation (user subject name), on which files (SURLs) and
with which result. If ERROR or FATAL levels are set, the only event logged in the file are those
due to error conditions. In Figure 7 an example of storm-backend log is shown.

Figure 7: storm-backend log line example.

heartbeat.log

StoRM provides a bookkeeping framework that elaborates informations on SRM requests
processed by the system to provide user-friendly aggregated data that can be used to get a quick
view on system health. The heartbeat.log file contains information on the SRM requests
processed by the system from its startup, adding new information at each beat. The beat time
interval can be configured, by default is 60 seconds. At each beat, the heartbeat component logs
an entry.
As shown in Figure 8, the information contained in this line are the lifetime from the last startup,
the BE process free heap size in Bytes, the number of Synchronous SRM requests executed in the
last beat, the number of srmPrepareToGet and srmPrepareToPut requests executed from start-up
and the number of srmPrepareToGet (as well as the srmPrepareToPut) executed in the last beat,
with the number of requests terminated with success (OK=10) and the average completion time in
millisecond (M.Dur.=150).
This file can help you to understand if the system is receiving SRM requests, or if the system is
overloaded by SRM requests, or if PTG and PTP are running without any problem, or if the
interaction with the filesystem is exceptionally slow (in case the mean duration is much higher
than usual).

storm-backend-metrics.log

A finer grained monitoring of incoming synchronous requests is provided by this log file,
which contains metrics for individual types of synchronous requests. An example entry log of

6



P
o
S
(
I
S
G
C
2
0
1
9
)
0
2
7

Log collection and Analytics with the ELK suite at the INFN-CNAF computing centre T. Diotalevi

Figure 8: heartbeat log line example.

storm-backend-metrics.log is shown in Figure 9: the information stored are the type of operation,
the number of operation in the last minute, the number of operations from last startup, the maximum
(minimum and average) duration of last bunch and the highest duration of the 95% (and 99%) last
bunch operations.

Figure 9: storm-backend-metrics log line example.

5. Building the infrastructure with the Elastic Stack

The installation and setup of the Elastic Stack suite has been performed on a test-bed
environment in the INFN-CNAF data center using a VM in Openstack [16]. In particular the
specifics of the VM test-bed used are the following:

• 2.2 GHz Dual Core VCPUs (Broadwell architecture) with 4MB cache;

• 4 GB of memory;

• 40 GB of disk;

• two volumes attached with a cumulative storage of 600 GB

5.1 Parsing the log information

The information coming from the log sources, described in the previous section, contains
heterogeneous data that require a structured filtering in order to be correctly indexed. Inside the
local cluster itself, Logstash allows the creation of a well defined pipeline collecting data from
Filebeat, which is installed in each node that contains the log files.
The different choice of filters is essential in order to correctly parse the log content: in particular,
the grok filter has been adopted. A grok filter, based on Regular Expressions, selects a specific
portion of text (both numeric or literal depending on the information required) by creating a series
of patterns. Some patterns are predefined, such as the IP address or the timestamp ISO format
(which are universally adopted and recognized), but the majority are custom made and stored in a
specific configuration file.
In Figure 10 an example of parsed log, with new structured information, is shown. In this
example, the original message is contained inside the message field and the other information
parsed from the initial log are listed alphabetically, such as the status of the StoRM operation
(INFO) or the action containing the specific operation performed (srmReleaseFiles). Some fields

7



P
o
S
(
I
S
G
C
2
0
1
9
)
0
2
7

Log collection and Analytics with the ELK suite at the INFN-CNAF computing centre T. Diotalevi

are automatically added by Filebeats, e.g. the information of the sender node name (beat.name),
the index name to which the log belongs, the offset field corresponding to the file offset the
reported line starts at and the type of document processed (log in this case).

Figure 10: Example of StoRM Backend metrics log line parsing.

5.2 Data visualization

Using the Kibana User Interface, the information extracted from the log parsing is then
processed and plotted with several histograms and charts. In Figure 11, a gauge chart shows the
count of the different status in the StoRM Backend log file on a specific time range defined by the
user. Another possible plot, shown in Figure 12, represents the count of all possible StoRM
Frontend operations in a time series format showing the user’s most frequent (Ls, Connection,
status of Prepare To Get and Prepare To Put). Using a heat map view, it is also possible to
geographically locate the most frequent IP addresses of StoRM client requests, as shown in Figure
13.

6. Machine Learning with the Elastic Stack

In the Elasticsearch new release (version 6.0 and above), a new extension was released using
Machine Learning capabilities for data search and analytics. This functionalities are embedded
within the premium features of X-Pack and are mainly focused on the time series anomaly detection.
Using unsupervised proprietary algorithms, the most straightforward use case of this technology is
to identify when a metric value or event rate deviates from its "normal" behaviour. Therefore, the
entry point into the Machine Learning features is a Single Metric job that allows the investigation

8



P
o
S
(
I
S
G
C
2
0
1
9
)
0
2
7

Log collection and Analytics with the ELK suite at the INFN-CNAF computing centre T. Diotalevi

Figure 11: Gauge visualisation with the possible statuses of the StoRM Backend.

Figure 12: Count of different requests for the StoRM Frontend.

of data trend during normal activity in order to identify anomalies on univariate time series data. If
the anomalies found are useful, it is then possible to run the analysis continually in real time and
alert when an anomaly occurs.
The implementation of such functionalities is optimized to run in an Elasticsearch cluster, allowing
the elaboration of millions of events in a small amount of time. An example is shown in Figure 14,
using the information from the last continuous bunch of srmPrepareToGet synchronous operations
from the heartbeat log file. The light blue area corresponds to the model bounds created, at first, by
the training phase of a past time interval and then by the real-time training process. Data coming
from the log is shown as a straight line and - during a normal activity - should be contained inside
the model bounds; when an anomaly occurs, the metric value exceeds the model threshold and,
therefore, produces a warning alert with a severity proportional to their relative discrepancy.
Figure 15, instead, shows an application of these functionalities with data coming from the parsed

9



P
o
S
(
I
S
G
C
2
0
1
9
)
0
2
7

Log collection and Analytics with the ELK suite at the INFN-CNAF computing centre T. Diotalevi

Figure 13: Geo heat map for the IP address location of the most frequent StoRM requests.

information of the StoRM Backend metrics log at the CNAF data center. Using the mean duration
of the last bunch of operations described in each log entry, it is possible to notice that - starting at a
certain point - the time duration increases by an order of magnitude causing, therefore, an increase
also in the number of warnings (shown in figure as small coloured dots based on the level of alert).
Figure 15 also depicts another important consideration: in fact - in the few hours preceding the
sudden increase in the metric value - some anomalous isolated peaks may indicate and may be
associated with the subsequent failure. The proactive identification of the anomaly, however, is
not possible using this particular tool given in the Elastic Stack. The only tool provided by the
Machine Learning functionality consists in a forecast button which purpose is the prediction of a
time interval, given a specific portion of training previous data. This option, however, does not take
under consideration any possible quick fluctuation of the examined metric since only the average
behaviour of the trained model is used for making future predictions.

Figure 14: Time series anomaly detection for the last bunch of ptg operations, from heartbeat log.

10



P
o
S
(
I
S
G
C
2
0
1
9
)
0
2
7

Log collection and Analytics with the ELK suite at the INFN-CNAF computing centre T. Diotalevi

Figure 15: Time series anomaly detection for the mean duration of the continuous last bunch of operations,
from storm-backend-metrics log.

6.1 Computing resources management

Another important aspect to consider is the workload on the VM resources used by the Elastic
Stack test-bed environment itself. The performance of the computing resources provided are, in
fact, continuously monitored and displayed using Graphana [17].
In Figure 16, the behaviour of the CPU usage over time is shown: a fair amount of CPU utilization
is observed in the time range shown, even during the most intensive operations reaching a maximum
value of about 90% but with an average value of 35-40%. The predominant task involving CPU
time is the real-time Machine Learning anomaly detection analysis (over several different jobs
submitted, using different test metrics); the main indication of such hypothesis is the sudden drop
in CPU in the last quarter of the above-mentioned chart caused by the termination of each job due
to licence expiration.
Memory usage, instead, is critical using the Elastic Stack as shown in Figure 17: during the entire
time range, in fact, memory is always fully saturated. The only noticeable decrease - visible in
figure - is mainly caused by the manual interruption of older indexes in order to optimize memory
usage.
Concerning storage, two volumes are used: the first one, which is currently full, of 200GB and a
second one, currently in use, of 400GB. Figure 18 shows the filling trend of the second disk (orange
line) in the two months’ observation window.

7. Conclusion

The Elastic Stack suite is a powerful tool for log analysis and ingestion as well as their
indexing and visualisation for online monitoring. At the INFN-CNAF Tier-1 data center, this suite
has been investigated for the creation of a centralised platform for logs coming from the StoRM
service.
Using a test-bed environment on an isolated virtual machine, log files coming from different
StoRM machines were collected and parsed using specific filters based on Regular Expressions.
In this way, the information carried out by such logs is structured and indexable by the
Elasticsearch engine providing fast search capabilities and visualisation of specific variables.
Moving towards a predictive failure system, the Elastic Stack suite provides a premium
functionality with a Machine Learning approach which was investigated and tested. This system,

11



P
o
S
(
I
S
G
C
2
0
1
9
)
0
2
7

Log collection and Analytics with the ELK suite at the INFN-CNAF computing centre T. Diotalevi

Figure 16: CPU usage on a two months time range.

Figure 17: Memory usage on a two months time range.

using unsupervised learning techniques, is mainly used for an anomaly detection scenario by
alerting operators when a certain metric exceeds a specified threshold given by the trained model,
continuously updated with new information. Using several metrics coming from the StoRM
Backend and Frontend instances during anomalous observation windows, several alerts were
correctly identified by the system. However, for a predictive scenario and a proactive
identification of failures, this may not be the optimal solution.
As a short-term goal at the INFN-CNAF computing center, some plans are currently being
investigated by developers. The first step is the creation of a centralised log source stored inside a
physical storage partition of the Tier-1. This unique log file will contain all the information
appended from different services running and may be accessed from any virtual machine by a
NFS mount point. A clean installation for the Elastic Stack suite will then be created on a

12



P
o
S
(
I
S
G
C
2
0
1
9
)
0
2
7

Log collection and Analytics with the ELK suite at the INFN-CNAF computing centre T. Diotalevi

Figure 18: Storage usage on a two months time range.

dedicated physical cluster and - using the Elasticsearch engine to process all the log information -
adopt other Machine Learning algorithms using conventional frameworks [18].
Another possible direction towards Big Data processing is also taken under consideration by
adding an Apache Spark [19] cluster on a cloud machine at CNAF with three dedicated storage
volumes of about 300GB each (installed via DODAS@CNAF).
Finally, also other logs must be analysed as well: Worker Nodes status, service machines, GPFS,
GridFTP [20], xrootd [21], batch system and application level logging.

References

[1] INFN-CNAF Tier 1 Data Center. Website: https://www.cnaf.infn.it/en

[2] The High-Luminosity project at the LHC. Website: http://hilumilhc.web.cern.ch/

[3] The Elastic Stack Suite main site. Webiste: https://www.elastic.co/elk-stack

[4] Elastic company main site. Website: https://www.elastic.co

[5] Elasticsearch main site. Website: https://www.elastic.co/products/elasticsearch

[6] Logstash main site. Website: https://www.elastic.co/products/logstash

[7] Kibana main site. Website: https://www.elastic.co/products/kibana

[8] Beats main site. Website: https://www.elastic.co/products/beats

[9] Grok Filter reference guide. Webiste:
https://www.elastic.co/guide/en/logstash/current/plugins-filters-grok.html

[10] Fielding, Roy Thomas. Architectural Styles and the Design of Network-based Software Architectures.
University of California, Irvine (2000).

[11] Apache Lucene reference guide. Website: https://lucene.apache.org/core/2_9_4/queryparsersyntax

[12] Magnoni, Luca and Zappi, Riccardo and Ghiselli, Antonia. StoRM: A flexible solution for Storage
Resource Manager in grid. IEEE Nuclear Science Symposium conference record (2008).

13

https://www.cnaf.infn.it/en
http://hilumilhc.web.cern.ch/
https://www.elastic.co/elk-stack
https://www.elastic.co
https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/beats
https://www.elastic.co/guide/en/logstash/current/plugins-filters-grok.html
https://lucene.apache.org/core/2_9_4/queryparsersyntax


P
o
S
(
I
S
G
C
2
0
1
9
)
0
2
7

Log collection and Analytics with the ELK suite at the INFN-CNAF computing centre T. Diotalevi

[13] CASTOR: CERN Advanced STORage manager. Website: http://castor.web.cern.ch/castor

[14] dCache, the Book. Website: https://www.dcache.org/manuals

[15] GPFS reference guide. Website here

[16] OpenStack Documentation. Website: https://www.openstack.org

[17] Graphana Documentation. Website: https://grafana.com

[18] L.Giommi et al., Towards Predictive Maintenance with Machine Learning at the INFN-CNAF
computing centre. In this conference.

[19] Apache Spark reference guide. Website: https://spark.apache.org

[20] GridFTP reference guide. Website: http://toolkit.globus.org/toolkit/docs/latest-stable/gridftp

[21] XRootD reference guide. Website: http://xrootd.org/

14

http://castor.web.cern.ch/castor
https://www.dcache.org/manuals
https://www.ibm.com/support/knowledgecenter/en/SSPT3X_3.0.0/com.ibm.swg.im.infosphere.biginsights.product.doc/doc/bi_gpfs_overview.html
https://www.openstack.org
https://grafana.com
https://spark.apache.org/
http://toolkit.globus.org/toolkit/docs/latest-stable/gridftp
http://xrootd.org/

