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Fracture functions are parton distributions of a hadron in the presence of an almost collinear parti-
cle observed in the final state. They are important ingredients in QCD factorization for processes
where a particle is produced diffractively. We take the production of a Drell-Yan lepton pair and
a diffractively produced photon in hadron collisions to discuss this. Through explicit one-loop
calculations , we show that both the transverse momentum dependent and the integrated fracture
functions can be factorized with twist-2 parton distribution functions and fragmentation functions
in different kinematic regions. The complete perturbative coefficients are obtained. Evolution
equations for these fracture functions are also derived.
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1. Introduction

In semi-inclusive high energy reactions, the observed particles can come from the fragmenta-
tion of a scattered parton, however, they can also be found among the remnants of the struck target,
or the so called target fragmentation region. E.g., the semi-inclusive deeply inelastic scattering
(SIDIS) in target fragmentation region, or diffractive Drell-Yan lepton pair and hadron production
at forward rapidities. If the transverse momentum of the produced particle is large, it is well known
that QCD collinear factorization works, and the cross section can be predicted in terms of parton
distribution functions (PDFs) and/or fragmentation functions (FFs). However, if the transverse
momentum is small, this factorization fails due to the large logs in perturbative coefficients.

It has been proposed in [1] to use fracture functions to describe particle productions in target
fragmentation region of SIDIS. In this talk, we discuss the factorizations for the production of a
Drell-Yan lepton pair associated with a diffractively produced photon in hadron-hadron collisions.
The cross-section or the hadronic tensor can be factorized in terms of integrated fracture functions
when the transverse momentum q⊥ of the lepton pair is large. When q⊥ ∼ ΛQCD, the factorization
can be done in terms of the transverse momentum dependent (TMD) fracture functions. By explicit
one-loop calculations, we show in momentum space and the Fourier transformed impact parameter
b-space that these fracture functions can be further factorized in terms of PDFs and FFs when the
transverse momentum is large or b is small. Evolution equations for the fracture functions are also
derived. The main results can be found in [2].

2. Factorization of the cross-section

We consider the process of the production of a Drell-Yan lepton pair associated with a diffrac-
tively produced photon in hadron-hadron collisions as shown in Fig.1(a), i.e.,

hA(PA)+hB(PB)→ γ∗(q)+ γ(k)+X . (2.1)

γ(k)

γ∗(q)
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k
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Figure 1: Feynman diagrams for the process and the hadronic tensor.

In the center of mass frame of hA and hB, the momenta of the virtual and real photon are:

qµ = (q+,q−, q⃗⊥), kµ = (k+,k− ,⃗k⊥)∼ Q(1,λ 2,λ ,λ ), (2.2)

where Q=
√

q2 ≫ΛQCD is the invariant mass of the lepton pair. The real photon is almost collinear
with hA, i.e., λ ≪ 1. The hadronic tensor is denoted in Fig.1(b), and it is defined as

W µν = ∑
X

∫ d4x
(2π)4 eiq·x⟨hA,hB|q̄(0)γνq(0)|X ,γ(k)⟩⟨γ(k),X |q̄(x)γµq(x)|hA,hB⟩. (2.3)
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This hadronic tensor will take different factorization forms in different regions.
Factorization with TMD fracture function. When q⊥ ∼ λQ, at the leading power, the hadronic

tensor can be factorized with the TMD fracture function, the TMD PDF, and a soft factor, i.e.,

W µν =−gµν
⊥

1
Nc

H(Q,ζ 2
u ,ζ 2

v )

∫
d2kA⊥d2kB⊥d2ℓ⊥δ 2(kA⊥+ kB⊥+ ℓ⊥−q⊥)

· S̃(ℓ⊥,ρ2) fq̄(y,kB⊥,ζv)Fq(x,kA⊥,ξ ,k⊥,ζu)+ · · · , (2.4)

the TMD fracture function is defined as

Fq(x,kA⊥,ξ ,k⊥) =
∫ dz−d2z⊥

2(2π)3 eik̃A·ẑ ∑
X
⟨hA|q̄(0)Lu(0)γ+|X ,γ(k)⟩⟨γ(k),X |L †

u (ẑ)q(ẑ)|hA⟩, (2.5)

with k̃µ
A = (xP+

A ,0,k1
A⊥,k

2
A⊥), ẑµ = (0,z−,z⊥) and ξ = k+/P+

A . We regularize the light-cone singu-
larity by putting the gauge link off the light-cone direction, i.e., uµ = (u+,u−,0,0), u+ ≪ u−. The
TMD fracture function will then have dependence on the parameter ζ 2

u = (2u ·PA)
2/u2.

Factorization with integrated fracture function. When q⊥ ≫ λQ, the standard collinear fac-
torization applies. The hadronic tensor is factorized with the integrated fracture function and the
collinear PDF

W µν =
∫

dxAdxB ∑
a,b

wµν
ab (xAPA,xBPB,q)Fa(xA,ξ ,k⊥) fb/B(xB), (2.6)

where wµν
ab is the perturbative coefficient. The integrated fracture function is defined as

Fq(x,ξ ,k⊥) =
∫ dλ

4π
eixP+

A λ ∑
X
⟨hA|q̄(0)Ln(0)γ+|X ,γ(k)⟩⟨γ(k),X |L †

n (λn)q(λn)|hA⟩. (2.7)

3. Factorization of the fracture functions

In general, fracture function is a nonperturbative object. However, when the transverse mo-
mentum of the observed particle is relatively large, there are effects which are calculable with
perturbative QCD, which means we can factorized them further. We show these factorizations for
the TMD and integrated fracture functions respectively in the following.

3.1 Factorization of the TMD fracture function at large transverse momentum

In the case kA⊥,k⊥ ≫ΛQCD and also ℓ⊥ = kA⊥+k⊥ ≫ΛQCD, only real diagrams in Fig.2 and 3
(conjugate diagrams not shown) with large transverse momentum parton emission will contribute.
The factorization is expected to take the following form:

Fq(x,kA⊥,ξ ,k⊥) =
∫ 1

x+ξ

dy
y

[
fq(y)Cq(x/y,ξ/y,kA⊥,k⊥)+ fg(y)Cg(x/y,ξ/y,kA⊥,k⊥)

]
, (3.1)
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(a) (b) (c)

(e)(d) (f)

Figure 2: Real diagrams for quark initial states.

(a) (b) (c)

Figure 3: Real diagrams for gluon initial states.

where fq,g(y) are twist-2 PDFs. The hard coefficients Cq,g are calculated straightforwardly:

Cq(x,ξ ,kA⊥,k⊥) =
αsCFe2

π2k2
⊥

[
δ (z)γ(ξ )

ℓ2
⊥

(
ln

ζ 2
u ξ̄ 2

ℓ2
⊥

−1

)
+

γ(ξ )/z+− x− ξ̄
ℓ2
⊥

−
x(ξ 2ℓ2

⊥+ z2k4
⊥/ℓ

2
⊥)

ξ ξ̄ 2D2
d

+
γ(ξ )ξ̄/z+− x−1

ξ̄ Dd
+

k2
⊥(γ(ξ )− z3 +3z2 +ξ z−4z)

ξ ξ̄ ℓ2
⊥Dd

]
+O(ε), (3.2)

Cg(x,ξ ,kA⊥,k⊥) =
αse2z
2π2

[
xzk2

⊥−2ξ 2xDc

ξ 2ξ̄ 2DcD2
d

+
2x2(1+ z)−ξ 2x−3x+1

ξ 2ξ̄ DcDd
+

z(ξ̄ 2 −2xz)
ξ 2Dcℓ2

⊥

− 2x2(z−ξ )−ξ 3 −3ξ 2x− x
ξ ξ̄ Ddℓ

2
⊥

−
xzk2

⊥
ξ ξ̄ 2D2

dℓ
2
⊥

]
+O(ε), (3.3)

in which we have used the notations: z = 1−x−ξ , ξ̄ = 1−ξ , γ(ξ ) = 1+ ξ̄ 2, Dc = (ℓ⊥+ zk⊥/ξ )2,
Dd =

(
ℓ⊥− zk⊥/ξ̄

)2
+ xzk2

⊥/ξ ξ̄ 2.

3.2 Factorization of the TMD fracture function in impact parameter space

When we transform the fracture function into the impact parameter b-space, i.e.,

F̂q(x,b,ξ ,k⊥) =
∫

d2−εℓ⊥e−ib·ℓ⊥Fq(x, ℓ⊥− k⊥,ξ ,k⊥), (3.4)

there is another factorization relating the fracture function to PDFs and FFs when the impact pa-
rameter b is small. The factorization reads:

F̂q(x,b,ξ ,k⊥) = ∑
a,b

∫ dy
y

fa(y)
[
Ĥa(

x
y
,
ξ
y
,b,k⊥)+

∫ dz
z

Db(z)Ĥab(x,ξ ,z,b,k⊥)
]
+O(b2). (3.5)

At one loop, besides the real diagrams in Fig.2 and 3, we also have virtual diagrams as in
Fig.4. The explicit results for each diagram can be found in [2]. We emphasize here that Fig.2(a),
(b) and Fig.4(c) all have 1/ε2

c double poles which come from the overlap of soft and collinear
pole. However, they correctly cancel each other, and the final results contain only a collinear single
pole. The divergent part for the quark initial state in Fig.2 and 4 can be factorized with the quark
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(a) (b) (c)

Figure 4: Virtual diagrams for the quark fracture function.

distribution function. The perturbative coefficient function is extracted as:

Ĥ
(1)

q (x,ξ ,b,k⊥) =
e2αsCF

πk2
⊥

{
−γ(ξ/y)

1+ y2

(ȳ)+
ln

µ2

k2
⊥
−2γ(ξ )

(
1
ȳ

)
+

(
ln b̃2k2

⊥+ ln
y−ξ
ξ ξ̄ 2

+
1
y

ln
ξ ξ̄
y

)

+δ (ȳ)
[

γ(ξ )
(

ln
b̃4k4

⊥
ξ̄ ξ 2

ln ξ̄ − 1
2

ln2 (ξ̄ 2ζ 2
u b̃2e−1)−2Li2

(
− ξ

ξ̄
)
− 3π2

2
−7

2

)
+3ξ̄ +1

]
+

(
2+ ξ̄ 2

ξ̄
− ȳ

ξ̄ 2
+1

)
ln

ȳx
ξ ξ̄ 2

+
2
(
ξ̄ +1

)
(y−ξ )+4
y

ln
ξ ξ̄
yȳ

+

(
2y−ξ − (y+1)

x2

y2

)
ln

ξ x
y2ȳ

+
γ(ξ )
ξ̄ 2

(
ξ̄ + x

)
ln b̃2k2

⊥+
2γ(ξ )

y
ln ȳ+

3ȳ+1
ξ̄

− 2ȳ
ξ̄ 2

+2ξ − ξ 2

y2 − ξ
y
− y
}
+O(α2

s ). (3.6)

For the gluon initial state in Fig.3, it is clear that the collinear divergence in figure Fig.3(a) can
be factorized into the quark-in-gluon PDF, and that in Fig.3(b) is factorized into the fragmentation
function of a quark to a photon. The hard scattering coefficients are determined as:

Ĥgq(x,ξ ,z,b,k⊥) =
4παs

k2
⊥

(
x2 + x̄2) x̄z2δ (x̄z−ξ ) , (3.7)

Ĥg(x,ξ ,b,k⊥) =
e2αs

2πk2
⊥

{
−(y2 + ȳ2)

[(
x2

y2 +1
)

ln
ξ xµ2

ȳy2k2
⊥
+

ξ 2

y2

]
+2
(
x2 + ȳ2) ln

xȳ
x̄y

−
(
x̄2 + x2)( ȳ2

x̄2 +1
)

ln
ξ 3xµ2

ȳx̄2k2
⊥

−2
(
x2 + ȳ2 − ξ̄

) ξ̄ −2xȳ
x̄y

+ξ
(

y
x̄
+

x̄
y

)
+8xȳ

}
. (3.8)

From our result, we can also directly derive the evolution equations of µ and ζu as:

∂ F̂q(x,b,ξ ,k⊥,ζu,µ)
∂ ln µ

= 2γF F̂q(x,b,ξ ,k⊥,ζu,µ), γF =
3αsCF

4π
+O(α2

s ),

∂ F̂q(x,b,ξ ,k⊥,ζ ,µ)
∂ lnζu

=−αsCF

π

(
ln

x2ζ 2
u b2e2γE−1

4

)
F̂q(x,b,ξ ,k⊥,ζu,µ)+O(α2

s ). (3.9)

the evolution equation of ζu is called as Collins-Soper equation[3], which is very useful for resum-
mation of large log’s in perturbation theory. As expected, these two equations are the same as those
of quark TMD PDFs.

3.3 Factorization of the integrated fracture function

When the transverse momentum kA⊥ is not observed, i.e., integrated out, we need the integrat-
ed fracture function. It can also be factorized further when k⊥ is large. The factorization takes the
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same form as that for the TMD fracture function:

Fq(x,ξ ,k⊥) = ∑
a

∫ dy
y

fa/h(y)
[
Ha(x/y,ξ/y,k⊥)+∑

b

∫ dz
z

Db(z)Hab(x/y,ξ/y,z,k⊥)
]
. (3.10)

In the calculation of the integrated fracture function, the gauge link is set along the light-cone direc-
tion, because there is no rapidity divergence in the final results. We refer to Ref.[2] for the detailed
calculations for each diagram and the results of the hard scattering coefficients. We emphasize that
from the results, we can derive explicitly the renormalization scale µ-evolution of the integrated
fracture function. It is given by

∂Fq(x,ξ ,k⊥,µ)
∂ ln µ

=
αs

π

∫ 1−ξ

x

dy
y

Pqq(x/y)Fq(y,ξ ,k⊥,µ)+ · · · , (3.11)

where Pqq(x)=CF
[
(1+ x2)/(1− x)++ 3

2 δ (1− x)
]
. The form of the evolution equation is the same

as the standard quark collinear PDF. This is due to the factor that the integrated fracture function
shares the same U.V. divergent subgraphs with the standard quark collinear PDF[4].

4. Summary

We showed that the hadronic tensor for the diffractive Drell-Yan lepton pair and photon pro-
duction in hadron collisions can be factorized in terms of TMD or integrated fracture functions for
different kinematic regions. Explicit one loop calculations show that both the TMD and integrated
fracture functions can be further factorized into parton distribution and fragmentation functions
when the transverse momentum is large or the impact parameter is small. Perturbative coefficients
are extracted. In addition, the evolution equations for TMD and integrated fracture functions are
derived. They take the same form as those for quark TMD and collinear PDFs respectively.
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