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Parton Branching TMDs with angular ordering
condition and their application to Z boson p⊥
spectrum
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We study the effects of angular ordering constraint on transverse momentum dependent (TMD)
parton distributions functions (PDFs) obtained within the Parton Branching (PB) method. We
compare it with virtuality and pt ordering definitions. We study the effect of ordering choice on
predictions for Z boson p⊥ spectrum, especially at low pt and we demonstrate the advantage of
the angular ordering. We compare the PB formalism with another existing and commonly used
approaches as Kimber-Martin-Ryskin-Watt (KMRW) and Collins-Soper-Sterman (CSS). Espe-
cially, we identify the CSS Sudakov coefficients with the terms in the PB Sudakov form factor.
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1. Motivation

The powerful tool used to obtain QCD predictions for high energy observables is the collinear
factorization theorem [1], based on the assumption that partons move collinearly with the hadron
they constitute. Although this approach is extremely successful in many different measurements,
there are some observables where also the transverse motion of the partons has to be taken into
account to achieve satisfactory precision. This can be fulfilled via the transverse momentum depen-
dent (TMD) factorization theorem [2] in the spirit of high energy k⊥- factorization [3] or Collins-
Soper-Sterman [4] formalism. The crucial ingredients of the TMD factorization approaches are
the TMD parton distribution functions (PDFs), called TMDs. TMDs can be obtained in a wide
kinematic range with the recently developed Parton Branching (PB) method [5, 6, 7].

In this paper we discuss the role of the angular ordering condition, which allows to treat prop-
erly the soft gluon colour coherence phenomena. We compare the angular ordering implementation
in the PB method with the prescriptions given by Marchesini’s and Webber’s [9], Kimber-Martin-
Ryskin-Watt (KMRW) [10] and Collins-Soper-Sterman (CSS) [4]. We demonstrate the importance
of angular ordering for obtaining precision description of Z boson p⊥ spectrum.

2. TMD evolution equation

In the PB method the evolution equation for the momentum weighted TMD Ãa
(
x,k⊥,µ2

)
=

xAa
(
x,k⊥,µ2

)
, for a parton species and flavour a, carrying the fraction x of the proton’s momentum

and having the transverse momentum k⊥ 1 at the evolution scale µ , including not only the collinear
evolution but also the transverse momentum at each branching, was proposed [5]

Ãa
(
x,k⊥,µ2)= ∆a

(
µ

2,µ2
0
)

Ãa
(
x,k⊥,µ2

0
)
+∑

b

∫ d2
µ ′⊥

πµ ′2
Θ
(
µ

2−µ
′2)

Θ
(
µ
′2−µ

2
0
)
×

× ∆a
(
µ

2,µ ′2
)∫ zM

x
dzPR

ab
(
z,αs(a(z)2

µ
′2)
)

Ãb

(
x
z
,k⊥+a(z)µ⊥,µ ′2

)
. (2.1)

Here PR
ab is the real-emission part of the splitting function for a parton b splitting into a parton a

which propagates towards the hard scattering, z = xa/xb is the splitting variable, |µ⊥| ≡ µ ′ is the
scale at which the branching happens, µ0 is the initial evolution scale. The Sudakov form factor is
defined as ∆a(µ

2,µ2
0 ) ≡ ∆a(µ

2) = exp
[
−∫ µ2

µ2
0

dµ ′2

µ ′2 ∑b
∫ zM

0 dzzPR
ba

(
z,αs

(
a(z)2µ ′2

))]
. The function

a(z) gives the relationship between the scale of the branching and the transverse momentum of the
emitted and propagating parton. For virtuality ordering, the scale of the branching is associated
with the virtuality of the propagating parton q2

⊥ = (1− z)µ ′2
(
a(z) =

√
1− z

)
. In the limit of z→ 1

one obtains p⊥-ordering condition where the scale of the branching is assigned to the transverse
momentum of the emitted parton q2

⊥ = µ ′2⊥ (a(z) = 1). For angular ordering condition the scale of
the branching is associated with energy of the parent parton times the angle of the emitted parton
with respect to the beam direction q2

⊥ = (1− z)2µ ′2⊥ (a(z) = 1− z). The relation between the scale
of the branching and the transverse momentum gives the constraint on the soft gluon resolution
scale parameter zM. It is fixed to a value very close to 1 for p⊥- ordering or it changes with the

1For a given 4-vector k = (k0,k1,k2,k3) = (Ek,k⊥,k3), where k⊥ = (k1,k2).
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branching scale as zM = 1−
(

q0
µ ′

)2
for virtuality ordering or zM = 1− q0

µ ′ for angular ordering where
q0 is the minimum transverse momentum of the emitted parton with which it can be resolved. The
PB method allows one to choose the definition of zM, the scale in αs and the way the transverse
momentum is related to the branching scale individually 2.
In the PB method the transverse momentum of the propagating parton is a sum of the intrin-
sic transverse momentum and the transverse momentum of all the emitted partons k⊥ = k⊥0−
∑i q⊥,i. After integrating eq. (2.1) over the transverse momentum k⊥ one obtains collinear PDF∫

dk2
⊥Ãa

(
x,k⊥,µ2

)
= f̃a

(
x,µ2

)
. In the limit of zM → 1 and with αs(µ

′2) the Dokshitzer-Gribov-
Lipatov-Altarelli-Parisi (DGLAP) evolution equation [11] is obtained.

3. Highlights

In fig. 1 we show PB TMDs 3 obtained with p⊥-, virtuality and angular ordering to relate
q⊥ and µ ′, with αs(µ

′2), for 3 different fixed values of zM. As discussed in [5], after integration
over the transverse momentum, with all these zM values and ordering definitions the same collinear
PDF is obtained. However, this is not the case for TMDs. Only in the case of angular ordering
the cancellation of non-resolvable emissions between real and virtual pieces is taken into account
properly and zM independent results are obtained. For p⊥-ordering the distributions are very much
dependent on zM that is why they are not going to be discussed anymore in this paper. Virtuality
ordering works much better than p⊥-ordering but worse than angular ordering.

The PB TMDs were used to test the effect of ordering choice on the prediction of the Z boson
p⊥ spectrum in DY process and compared to the ATLAS measurement [12] at 8 TeV. The procedure
how the results are obtained is described in [6]. In fig. 2 we present results obtained with the PB
TMDs 4 and Pythia leading order (LO) matrix element. The results on the left hand side of fig. 2 are
obtained with the angular and virtuality ordering conditions to relate q⊥ and µ ′ with zM = 1−10−5

and αs(µ
′2). In the next step, the scale of αs was changed to be the transverse momentum, which

is shown in the right of fig. 2. From fig. 2 one can see the difference between virtuality and angular
ordering predictions. Only with angular ordering condition one can reproduce the correct shape of
the Z boson p⊥ spectrum. Moreover, for angular ordering, the change of the scale in the running
coupling to the transverse momentum leads to better data description. Based on this result, fits
of TMDs to precision measurements of deep inelastic scattering (DIS) cross sections at HERA
were performed using xFitter [8] for angular ordering (q2

⊥ = (1−z)2µ ′2⊥ ) in two scenarios: with
αs(µ

′2) and αs(q2
⊥) [6]. A very good description of the Z boson p⊥ spectrum was obtained with

αs(q2
⊥) which is shown in fig. 3 [6].

4. PB and other approaches

In the following we present the first results obtained with the dynamic zM.

2E.g. one can use angular ordering in the relation between q⊥ and µ ′ but keeping zM fixed and αs(µ
′2) as in

p⊥-ordering to study the effect of each piece of the ordering definition.
3The next-to-leading order (NLO) splitting functions and αs and the default QCDNUM parametrization as the

starting distribution are used.
4The NLO splitting functions and αs, with the initial parametrization from HERAPDF2.0 are used
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Marchesini and Webber After integration of eq. (2.1) with angular ordering condition over the
transverse momentum, the following evolution formula for the collinear distribution is obtained

f̃a(x,µ2) = f̃a(x,µ2
0 )∆a(µ

2)+
∫

µ2

µ2
0

dµ ′2

µ ′2
∆a(µ

2)

∆a(µ ′2)
∑
b

∫ 1− q0
µ ′

x
dzPR

ab(αs((1− z)2
µ
′2),z) f̃b(

x
z
,µ ′2) (4.1)

which coincides with the evolution formula of Marchesini and Webber [9] 5.

Kimber-Martin-Ryskin-Watt In this paragraph the PB method is compared with the KMRW
approach [10]. For this purpose, the PB formula for angular ordering eq. (4.1) is rewritten in terms
of integral over the transverse momentum q2

⊥ instead of the branching scale µ ′2 6

f̃a(x,µ2) = f̃a(x,µ2
0 )∆a(µ

2,µ2
0 )

+
∫ (1−x)2µ2

q2
0

dq2
⊥

q2
⊥

∫ 1− q⊥
µ

x
dz∆a

(
µ

2,
q2
⊥

(1− z)2

)
∑
b

PR
ab
(
αs
(
q2
⊥
)
,z
)

f̃b

(
x
z
,

q2
⊥

(1− z)2

)
. (4.2)

The KMRW angular ordered evolution equation has the following form

f̃a(x,µ2) = f̃a(x,µ2
0 )∆a(µ

2,µ2
0 )

+
∫

µ2( 1−x
x )

2

q2
0

dq2
⊥

q2
⊥

(
∆a(µ

2,q2
⊥)∑

b

∫ 1− q⊥
q⊥+µ

x
dzPR

ab
(
αs
(
q2
⊥
)
,z
)

f̃b

(
x
z
,q2
⊥

))
(4.3)

where the TMDs are defined as f̃ (x,µ2,q2
⊥) = ∆a(µ

2,q2
⊥)∑b

∫ 1− q⊥
q⊥+µ

x dzPR
ab

(
αs(q2

⊥),z
)

f̃b
( x

z ,q
2
⊥
)
.

KMRW is one-step evolution: the second scale enters only in the last step of the evolution whereas
in the PB method both k⊥ and µ ′ are calculated at each branching. Still, it is interesting to compare
eq. (4.2) and eq. (4.3). Both formalisms use q⊥ as the scale in αs. Differences manifest themselves
in the integration limits and in different scales in parton densities f̃b and Sudakov form factors ∆a.
The TMD sets obtained according to KMRW angular ordering prescription, included in TMDlib
and TMDplotter [13] under the name MRW-CT10nlo [14] and PB TMDs 7 are compared in the left
and middle panels of fig. 4. Despite many differences, PB and KMRW are similar in the middle
k⊥ range compared to the scale µ . The difference in the low k⊥ region comes from the intrinsic
k⊥ parametrization, which for KMRW is a constant parametrization and for the PB is a Gaussian
smeared during the evolution process. PB and KMRW differ also in the large k⊥ region: a very
large k⊥ tail in KMRW comes from their treatment of the Sudakov form factor for k⊥ > µ . In
the right of fig. 4 predictions for Z boson p⊥ spectrum obtained with PB and KMRW TMDs are
compared to the ATLAS data. KMRW overestimates the data in the large p⊥ region.

Collins-Soper-Sterman In the following the comparison of the Sudakov form factors in the PB
method and CSS formalism for the Drell-Yan (DY) cross section [4] is discussed. The PB Sudakov
can be rewritten in terms of virtual pieces of the splitting functions and with angular ordering condi-

tion in the form ∆a(µ
2,µ2

0 ) = exp
(
−∫ µ2

µ2
0

dq2
⊥

q2
⊥

αs(q⊥)
(∫ 1− q⊥

µ

0 dz
(
ka

1
1−z

)
−da

))
. The coefficients

5Marchesini and Webber studied the coherent branching with LO splitting functions and αs, we use them at NLO.
6The difference between µ0 and q0 is neglected.
7PB TMDs were obtained with q0 = 1GeV and cut in αs forbidding the renormalization scale to go below the initial

evolution scale. The starting distribution is ct10nlo.
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kq and dq [5] in the PB Sudakov and A1 (giving leading logarithmic (LL) contributions), B1 and
A2 (giving together with C1 next-to-leading logarithmic (NLL) contributions) coefficients of the
CSS method are exactly the same. Because of the renormalization group equation and resumma-
tion scheme dependence the Sudakov form factor is process dependent [15]. We find a difference
between B2 CSS coefficient (giving together with A3 and C2 next-to-next-to leading (NNLL) loga-
rithmic contribution) and the 2d1

q coefficient in PB Sudakov being πβ016
(

π2

6 −1
)

where β0 is the
first coefficient of the expansion of the QCD β function.

5. Conclusions

PB method allows to obtain collinear and TMD PDFs in a wide kinematic range by calculating
the kinematics at each branching and to study different ordering definitions. It was shown that
angular ordering condition leads to stable, zM-independent TMDs and good description of Z boson
p⊥ spectrum. In this paper the PB implementation of the angular ordering condition was compared
to other approaches. The PB method agrees with Marchesini’s and Webber’s prescription. We
discussed the differences and similarities of PB and KMRW approach. We illustrated that PB
includes the same LL and NLL coefficients in the Sudakov form factor as CSS formalism. The
differences between NNLL coefficients in the Sudakov form factors of these two methods come
from the resummation scheme dependence.
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Figure 1: TMDs with p⊥− (left), virtuality (middle) and angular ordering (right) to calculate q⊥, with
αs(µ

′2) and for different values of zM .
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Figure 2: Predictions for the Z boson p⊥ spectrum
obtained with the PB TMDs with virtuality and an-
gular ordering relation between q⊥ and µ ′ compared
to the ATLAS data. Left: with αs(µ

′2). Right: with
αs(q2

⊥).
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Figure 3: Predictions for the Z boson p⊥ spectrum
obtained with the PB TMDs from the fit for q2

⊥ =

(1− z)2µ ′2, with αs(µ
′2) and αs(q2

⊥) compared to
ATLAS data.
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Figure 4: Comparison of KMRW and PB TMDs (left and middle). Prediction for Z boson p⊥ spectrum
obtained with PB TMDs and KMRW compared to 8 TeV ATLAS measurement (right).
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