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We review our recent results for production ofW+W− and tt̄ pairs via photon-photon fusion.

A theoretical approach is presented in short. We include transverse momenta of photons when

calculating fluxes of photons. Then we discuss our results for cross section (total and differential)

for W+W− production. Results for different parametrizations of proton structure functions are

used to calculate inelastic fluxes of photons. A discussion on rapidity gap survival probability

due to remnant fragmentation is presented. A similar discussion is presented fortt̄ production.
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1. Introduction

It was realized rather recently that the electroweak corrections are important for precise calcu-
lations of cross sections in different processes. Thepp→W+W− process is a good example (see
e.g. [1]). Thenγγ →W+W− is the most important subprocess. This subprocess is important also
in the context of searches beyond Standard Model [2, 3]. By imposing special conditions on the
final state this contribution can be observed experimentally [4, 5].

In [6, 7] we developed a formalism for calculatingpp→ l+l− processes proceeding via
photon-photon fusion. In [8] we used the same technique to calculate cross section forpp→
W+W− reaction proceeding via photon-photon fusion. In order to make reference to real “measure-
ments” of the photon-photon contribution one has to includein addition the gap survival probability
caused by extra emissions. In [9] we concentrated on the effect related to remnant fragmentation
and its destroying of the rapidity gap.

In [10] we calculated cross section for the photon-photon contribution for thepp→ tt̄ reaction
including also effects of gap survival probability.

Here we briefly review our results obtained in [8, 9, 10].

2. Our approach

In our analyses we included different categories of processes shown in Fig.2.
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Figure 1: Diagrams representing different categories of photon-photon induced mechanisms for production
of W+W− pairs.

In contrast to other authors, in our approach we include transverse momenta of (virtual) pho-
tons. Then the differential cross section forW+ andW− production can be written as:

dσ (i, j)

dy1dy2d2~pT 1d2~pT 2
=

∫

d2~qT 1

π~qT
2
1

d2~qT 2

π~qT
2
2

F
(i)
γ∗/A(x1,~qT 1)F

( j)
γ∗/B(x2,~qT 2)

dσ ∗(p1, p2;~qT 1,~qT 2)

dy1dy2d2~pT 1d2~pT 2
,(2.1)
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wherei, j = elastic, inelastic and the longitudinal momentum fractions are expressed in terms of
rapidities and transverse momenta ofW bosons.
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~pT
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2 +m2

W

s
e−y2 . (2.2)

The elementaryγγ →W+W− processes in the Standard Model are shown in Fig.2.
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Figure 2: Different Feynman diagrams for photon-photon induced mechanisms for production ofW+W−

pairs.

The elementary off-shell cross section in (2.1) is written as:

dσ ∗(p1, p2;~qT 1,~qT 2)

dy1dy2d2~pT 1d2~pT 2
=

1
16π2(x1x2s)2 ∑

λW+λW−

|M(λW+ ,λW−)|2δ (2)(~pT 1 +~pT2−~qT1−~qT2) .

Above the helicity-dependent off-shell matrix elements were calculated as:

M(λW+λW−) =
1

|~q⊥1||~q⊥2| ∑
λ1λ2

(~e⊥(λ1) ·~q⊥1)(~e⊥
∗(λ2) ·~q⊥2)M (λ1,λ2;λW+ ,λW−)

=
1

|~q⊥1||~q⊥2| ∑
λ1λ2

qi
⊥1q j

⊥2ei(λ1)e
∗
j (λ2)M (λ1,λ2;λW+ ,λW−) . (2.3)

Initial and final state helicity-dependent matrix elementswere discussed e.g. in [11]. The
kt -factorization W-boson helicity dependent matrix elements were calculated with the help of the
above [8].

The unintegrated inelastic flux of photons is expressed as:

F
in
γ∗←A(z,~qT) =

αem

π

{

(1−z)
( ~qT

2

~qT
2 +z(M2

X−m2
p)+z2m2

p

)2 F2(xBj ,Q2)

Q2 +M2
X−m2

p

+
z2

4x2
Bj

~qT
2

~qT
2 +z(M2

X−m2
p)+z2m2

p

2xBjF1(xBj ,Q2)

Q2 +M2
X−m2

p

}

, (2.4)

The main ingredients of the formula areF1 andF2 proton structure functions.
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contribution 8 TeV 13 TeV

LUX-like
γelγin 0.214 0.409
γinγel 0.214 0.409
γinγin 0.478 1.090

ALLM97 F2
γelγin 0.197 0.318
γinγel 0.197 0.318
γinγin 0.289 0.701

SU F2
γelγin 0.192 0.420
γinγel 0.192 0.420
γinγin 0.396 0.927

LUXqed collinear
γin+el γin+el 0.366 0.778

MRST04 QED collinear
γelγin 0.171 0.341
γinγel 0.171 0.341
γinγin 0.548 0.980

Elastic- Elastic
γelγel (Budnev) 0.130 0.273

γelγel (DZ) 0.124 0.267

Table 1: Cross sections (inpb) for different contributions and differentF2 structure functions: LUX,
ALLM97 and SU, compared to the relevant collinear distributions with MRST04 QED and LUXqed dis-
tributions.

The unintegrated elastic flux of photons is expressed as:

F
el
γ∗←A(z,~qT) =

αem

π

{

(1−z)
( ~qT

2

~qT
2 +z(M2

X−m2
p)+z2m2

p

)2 4m2
pG2

E(Q2)+Q2G2
M(Q2)

4m2
p +Q2

+
z2

4
~qT

2

~qT
2 +z(M2

X−m2
p)+z2m2

p

G2
M(Q2)

}

.

(2.5)

In this case the main ingredients areGE andGM electromagnetic form factors of proton.

To calculate inelastic fluxes of photons one needs numericalrepresentation of structure func-
tions of protons. Different parametrizations ofF2 structure functions are available in the literature,
see e.g. [12, 13, 14].

3. Results

The integrated cross sections obtained in our approach are collected in Table 1.
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Without any gap survival effects:

σ(inel.− inel.) > σ(inel.−el.)+ σ(el.− inel.) > σ(el.−el.) . (3.1)

Many differential distributions were calculated in [8]. Here, in Fig.3, we show only invariant
mass distribution for double dissociation processes (inelastic-inelastic) for different parametriza-
tions of the structure functions from the literature.
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Figure 3: MWW invariant mass distribution for double dissociative contribution obtained with different
parametrizations of structure functions.

Thekt -factorization result is similar to the collinear one for the same structure function (LUX-
like). The rather old MRST04-QED collinear approach [15] predicted larger cross section. The
reasons were discussed in [8].

)
1

(-t
10

log
-6 -4 -2 0 2 4 6

)
2

(-
t

10
lo

g

-6

-4

-2

0

2

4

6

-610

-510

-410

Figure 4: Two-dimensional distribution in(log10(Q2
1), log10(Q2

2)) for double dissociative process.

As an example in Fig.3 we show distribution in virtualities of photons. Rather large virtualities
of photons come into game. The large virtualities of photonsseem to contradict collinear approach.

Our formalism allows to calculate contributions dependingon helicities ofW+ andW− bosons.
The results are collected in Table 2 for two different collision energies. Clearly theTT contribution
dominates.
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contribution 8 TeV 13 TeV

TT 0.405 0.950

LL 0.017 0.046

LT + TL 0.028 + 0.028 0.052 + 0.052

SUM 0.478 1.090

Table 2: Contributions of different polarizations ofW bosons for the inelastic-inelastic component for the
LUX-like structure function. The cross sections are given in pb.
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Figure 5: Schematic representation of the single and double dissociative mechanisms. Jets are shown
explicitly.

8 TeV 13 TeV 8 TeV 13 TeV 8 TeV 13TeV

(2MWW,200GeV) 0.763(2) 0.769(2) 0.582(4) 0.591(4) 0.586(1) 0.601(2)

(200,500GeV) 0.787(1) 0.799(1) 0.619(2) 0.638(2) 0.629(1) 0.649(1)

(500,1000GeV) 0.812(2) 0.831(2) 0.659(3) 0.691(3) 0.673(2) 0.705(2)

(1000,2000GeV) 0.838(7) 0.873(5) 0.702(12) 0.762(8) 0.697(5) 0.763(6)

full range 0.782(1) 0.799(1) 0.611(2) 0.638(2) 0.617(1) 0.646(1)

Table 3: Average rapidity gap survival factors:SR,SD(|ηch|< 2.5), (SR,SD)
2 (|ηch|< 2.5), SR,DD(|ηch|< 2.5)

related to remnant fragmentation forsingle dissociativeanddouble dissociativecontributions for different
ranges ofMWW.

The remnant fragmentation [9] was done with the help of PYTHIA 8 program. Including only
parton (jet) emission is already a quite good approximation.

The gap survival probability for single dissociative process is calculated as:

SR(ηcut) = 1− 1
σ

∫ ηcut

−ηcut

dσ
dηjet

dηjet . (3.2)

A schematic representation of remnant fragmentation(s) with explicit jet is shown in Fig.5. Jet
emissions were considered also in [17].

The gap survival factor associated with jet emission is shown in Fig.6.
Fig.7 illustrates how gap survival factor is destroyed by particle (hadron) emission for double

dissociative process.
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Figure 6: Gap survival factor for single dissociative process associated with the jet emission. The solid line
is for the full model, the dashed line for the valence contribution and the dotted line for the sea contribution.
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Figure 7: Two-dimensional (ηch
X ,ηch

Y ) distribution for a selected window ofMWW. The square shows pseu-
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We find (see also Table 1)

SR,DD ≈ (SR,SD)
2 . (3.3)

Such an effect is naively expected when the two fragmentations are independent, which is the case
by the model construction. The soft processes will most probably violate the factorisation. There is,
however, no formalism which allows to calculate the gap survival probabability for these processes
as a function of rapidity gap window. So far we have not included the soft gap survival factors.
They are relatively easy to calculate only for double elastic (DE) contribution [16]. For the “soft”
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Contribution No cuts yjet cut

elastic-elastic 0.292 0.292
elastic-inelastic 0.544 0.439
inelastic-elastic 0.544 0.439

inelastic-inelastic 0.983 0.622

all contributions 2.36 1.79

Table 4: Cross section fortt̄ production in fb at
√

s= 13 TeV for different components (left column) and the
same when the extra condition on the outgoing jet|yjet|> 2.5 is imposed.

gap survival factors we expect:

Sso f t(DD) < Sso f t(SD) < Sso f t(DE) . (3.4)

Finally we wish to show also similar results forpp→ tt̄ reaction. In Table 3 we show integrated
cross sections for different categories of processes. Rather small cross sections are obtained. It is
not clear at present whether such a process can be identified experimentally.

As an example we showtt̄ invariant mass distribution for inclusive case as well as when extra
veto on (mini)jet is imposed. The inclusion of rapidity gap veto reduces the cross section. Whether
the cross section corresponding to the photon-photon fusion can be measured requires special ded-
icated studies.
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Figure 8: tt̄ invariant mass distribution for different components defined in the figure. The left panel is
without imposing the condition on the struck quark/antiquark and the right panel includes the condition.

4. Conclusions

Helicity-dependent matrix elements forγ∗γ∗→W+W− (off-shell photons) have been derived
and used in the calculation of cross sections forpp→W+W− reaction. We have obtained cross
section of about 1 pb for the LHC energies. This is about 2 % of the total integrated cross section
dominated by the quark-antiquark annihilation and gluon-gluon fusion. Different combinations of
the final states (elastic-elastic, elastic-inelastic, inelastic-elastic, inelastic-inelastic) have been con-
sidered. The unintegrated photon fluxes were calculated based on modern parametrizations of the
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proton structure functions from the literature. Several differential distributions inW boson trans-
verse momentum and rapidity,WW invariant mass, transverse momentum of theWWpair, mass of
the remnant system have been presented. Several correlation observables have been studied. Large
contributions from the regions of large photon virtualities Q2

1 and/orQ2
2 have been found putting

in question the reliability of leading-order collinear-factorization approach. We have presented a
decomposition of the cross section into different polarizations of bothW bosons. It has been shown
that the TT (bothW transversly polarized) contribution dominates and constitutes more than 80 %
of the total cross section. TheLL (bothW longitudinally polarized) contribution is interesting inthe
context of studyingWW interactions or searches beyond the Standard Model. We havequantifield
the effect of inclusion of longitiudinal structure function into the transverse momentum dependent
fluxes of photons. A rather small, approximatalyMWW - independent, effect was found.

We have discussed the quantity called “remnant gap survivalfactor” for the pp→W+W−

reaction initiated via photon-photon fusion. We have calculated the gap survival factor for single
dissociative process on the parton level. In such an approach the outgoing parton (jet/mini-jet) is
responsible for destroying the rapidity gap. We have found that the hadronisation only mildly modi-
fies the gap survival factor calculated on the parton level. This may justify approximate treatment of
hadronisation of remnants. We have found different values for double and single dissociative pro-
cesses. In general,SR,DD < SR,SD andSR,DD ≈ (SR,SD)

2. We expect that the factorisation observed
here for the remnant dissociation and hadronisation will beviolated when the soft processes are
explicitly included. The largerηcut (upper limit on charged particles pseudorapidity), the smaller
rapidity gap survival factorSR. This holds both for the double and the single dissociation.The
present approach is a first step towards a realistic modelling of gap survival in photon induced in-
teractions and definitely requires further detailed studies and comparisons to the existing and future
experimental data.

We have also calculated cross sections fortt̄ production viaγγ mechanism inpp collisions
including photon transverse momenta and using modern parametrizations of proton structure func-
tions. The contribution to the inclusivett̄ is only about 2.5 fb. We have foundσela−ela

tt < σSD
tt <

σDD
tt . We have calculated several differential distributions. Some of them are not accessible in

standard equivalent photon approximation. As forW+W− production we have shown that rather
large photon virtualities come into the game.
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