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1. Introduction

One of the most commonly used approximation in the Color Glass Condensate (CGC) frame-
work to study high energy collisions is the eikonal approximation. In dilute-dense systems, this
corresponds to the adopting the following three approximations in the background field, Aµ , of
the target: (i) considering only the largest component of the background field (− component), (ii)
neglecting the dynamics of the target (assuming that the target field does not depend on the z−

coordinate) and (iii) assuming that the target field is localized around z+ = 0 (the shockwave ap-
proximation). Under these assumptions, the form of the background field that defines the target
simply reads

Aµ = δ
µ−

δ (z+)A−(z) (1.1)

In order to go beyond the eikonal accuracy one should relax all these three approximations simul-
taneously. However, the leading contribution beyond eikonal accuracy arises from relaxing the
shockwave approximation and considering a finite longitudinal width target. This is due to the fact
that the finite width of the target gives a A1/3 nuclear enhancement factor. This step has been taken
in [1, 2] and the subeikonal corrections to the gluon production amplitude has been calculated to
second order for proton-nucleus (pA) collisions. In [3], the dilute target limit of this result has been
studied and corrections to the eikonal Lipatov vertex have been calculated for proton-proton (pp)
collisions.

2. Non-eikonal Lipatov vertex

In [3], the non-eikonal corrections to the Lipatov vertex that are due to the finite longitudinal
width of the target have been calculated to the next-to-next-to eikonal (NNEik) accuracy and read:

LNNEik(k+,k,q;x+) =
[
(k−q)i

(k−q)2 −
ki

k2

]{
1+ i

k2

2k+
x+− 1

2

(
k2

2k+
x+
)2}

, (2.1)

where (k− q) is the transverse momenta of the gluon in the projectile, and k is the transverse
momenta, k+ the longitudinal momenta and x+ the longitudinal position of the produced gluon.
The eikonal Lipatov vertex L(k,q) is the O(1) term on the right hand side of Eq. (2.1). The
derivation of the NNEik Lipatov vertex given in Eq. (2.1) relies on the results of [1, 2] where the
background gluon propagator was calculated to NNEik order in powers of the finite width of the
target, valid for pA collisions. In order to extract the Lipatov vertex at NNEik order, the target
have been expanded in powers of the background field [3], which effectively corresponds to going
from pA to pp collisions in the CGC framework. The form of the Lipatov vertex given in Eq. (2.1)
suggests an exponentiation. However, this was only shown to second order in the expansion.

On the other hand, the Lipatov vertex can be computed to all orders in powers of the finite lon-
gitudinal width of the target in the dilute target limit, i.e., for pp collisions, for particle production
processes by considering the three diagrams shown in Fig.(1) and keeping the phases in the calcu-
lation which are set to unity in the eikonal calculations [4]. The calculation yields the following
non-eikonal Lipatov vertex that resums all order eikonal corrections that originate from the finite
longitudinal width of the target (see [4] for details of the derivation):

LNonEik(k+,k,q : x+) =
[
(k−q)i

(k−q)2 −
ki

k2

]
ei k2

2k+
x+ . (2.2)
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A B C

Figure 1: Diagrams that contribute to the computation of the Lipatov vertex. The black dot represents the
Lipatov vertex which is the sum of all real diagrams for gluon production shown on the right hand side of
the equation.

We would like to mention that this result is not new by itself and similar calculations and
expressions can be found in the literature [5, 6]. But the identification of this building block for its
use to include non-eikonal corrections in CGC calculations is done in [4] for the first time.

3. Non-eikonal single and double inclusive gluon production

By using the expression for the non-eikonal Lipatov vertex Eq. (2.2), one can easily calculate
the non-eikonal single and double inclusive gluon production cross-section in pp collisions with the
following recipe. The single and double inclusive gluon production in pA collisions in the eikonal
limit has been calculated in [7]. For the single inclusive production the cross section reads

dσ

d2kdη
= 4παs

∫

zz̄
eik(z−z̄)

∫

xy
Ai(x−z)Ai(z̄−y)

〈
ρ

a(x)ρb(y)
〉

P

〈[
Uz−Ux

]ac[U†
z̄ −U†

y
]cb
〉

T
, (3.1)

where k is the transverse momenta and η is the rapidity of the produced gluon, Uz and ρ(z) are the
eikonal Wilson line and the color charge density of the projectile at transverse position z, respec-
tively, and 〈· · ·〉P,T denote the averages on projectile and target configurations. By using the MV
model for the two projectile color charge correlator (〈ρa(x)ρb(y)〉P), expanding the Wilson lines in
powers of the target background field to first order in the amplitude and in the complex conjugate
amplitude and Fourier transforming the expression to the momentum space, one gets the following
expression for the single inclusive production in the dilute limit:

dσ

d2kdη

∣∣∣∣
dilute

= 4παsCAg2
∫

dx+1 dx+2

∫ d2q1

(2π)2
d2q2

(2π)2 δ
cc̄
〈

A−c (x
+
1 ,q1)A−c̄ (x

+
2 ,q2)

〉
T

× µ
2[k−q1,q2− k]Li(k,q1)Li(k,q2). (3.2)

In order to go from the eikonal to the non-eikonal case, one replaces the eikonal Lipatov vertex by
the non-eikonal one,

Li(k,q)→ Li
NonEik(k

+,k,q;x+) (3.3)

and employs

〈
A−c (x

+
1 ,q1)A−c̄ (x

+
2 ,q2)

〉
T
= δ

cc̄ n(x+1 )
2λ+

θ

(
λ
+−|x+1 − x+2 |

)
(2π)2

δ
(2)(q1−q2)|a(q1)|2 (3.4)

for the two field correlator. Here, λ+ is the color correlation length in the target that we assume to
be much smaller than the total longitudinal width of the target L+. Moreover, function n(x+) defines
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the one dimensional target density along the longitudinal axis. For simplicity of the calculation,
we take this function constant with a finite support, n(x+) = n0 for 0≤ x+ ≤ L+ and 0 elsewhere.
Finally, function a(q) that appears in the definition of the two field correlator is the functional form
of the potential in momentum space which is usually taken to be a Yukawa type potential in jet
quenching calculations (|a(q)|2 = m2/(q2 +m2)2). All said and done, one gets the non-eikonal
single inclusive gluon production cross section in pp collisions:

dσ

d2kdη

∣∣∣∣
NE

dilute
= 4παsCA(N2

c −1)g2G NE
1 (k−;λ

+)
∫ d2q

(2π)2 µ
2[k−q,q− k]Li(k,q)Li(k,q)|a(q)|2,

(3.5)
where k− = k2/2k+. Here, all the non-eikonal effects are encoded in the function G NE

1 (k−;λ+)

whose explicit expression reads

G NE
1 (k−;λ

+) =
1

k−λ+
sin(k−λ

+), (3.6)

which goes to unity in the eikonal limit (λ+→ 0). One can adopt the same procedure to calculate
the non-eikonal double inclusive gluon production cross section in pp collisions in the CGC frame-
work. The result can be written in the following compact way (see [4] for details of the calculation,
and also for the triple inclusive gluon cross section):

dσ

d2k1dη1d2k2dη2

∣∣∣∣
NE

dilute
= α

2
s (4π)2g4C2

A(N
2
c −1)

∫ d2q1

(2π)2
d2q1

(2π)2 |a(q1)|2|a(q2)|2

× G NE
1 (k−1 ;λ

+)G NE
1 (k−2 ;λ

+)

{
I(0)2tr +

1
N2

c −1

[
I(1)2tr + I(1)1tr

]}
, (3.7)

where the explicit expressions for the terms I(0)2tr , I
(1)
2tr and I(1)1tr can be found in [4]. It is important to

note that some of the terms that appear in the double inclusive gluon production cross section are
accompanied by a new function G NE

2 (k−1 ,k
−
2 ;L+) which is defined as

G NE
2 (k−1 ,k

−
2 ;L+) =

{
2

(k−1 − k−2 )L+
sin
[
(k−1 − k−2 )

2
L+

]}
. (3.8)

Before we conclude this section, we would like to comment on the nature of the non-eikonal double
inclusive gluon production cross section. In the eikonal limit, double inclusive gluon production
cross section calculated in the CGC framework is known to obey the so-called "accidental symme-
try". Effectively, this corresponds to the fact that the double inclusive gluon production cross sec-
tion is symmetric under k2→−k2. However, in the non-eikonal case, the cross section can be writ-
ten by using (k+2 ,k2)→ (−k+2 ,−k2). It is obvious from the definition of function G NE

2 (k−1 ,k
−
2 ;L+)

given in Eq. (3.8) that this function is not symmetric under (k+2 ,k2)→ (−k+2 ,−k2) which leads to
the same lack of symmetry in the non-eikonal double inclusive production cross section.

4. Discussion

Let us now discuss the implications of the non-eikonal corrections on single and double inclu-
sive gluon production cross sections.
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Noneikonal single inclusive gluon production
After all said and done:

d�

d2kd⌘

����
NE

dilute

/ GNE
1 (k�;�+)

Z

q
µ2

⇥
k � q, q � k

⇤
Li (k , q)Li (k , q)

��a(q)
��2

the function that encodes the non-eikonal e↵ects

GNE
1 (k�;�+) =

1

k��+
sin(k��+)

in the eikonal limit:

lim
(k��+)!0

GNE
1 (k�;�+) = 1

8
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FIG. 5: The ratio of non-eikonal to eikonal single inclusive gluon production cross sections, (33), as a function of the transverse
momenta of the produced gluon for di�erent values of the correlation length �+, at fixed pseudorapidity � = 2.

FIG. 6: The ratio of non-eikonal to eikonal single inclusive gluon production cross sections, (33), as a function of the pseudo-
rapidity of the produced gluon for di�erent values of its transverse momenta at a fixed correlation length �+ = 0.5 fm.

the colour correlation length �+. In the limit of vanishing transverse momenta of the produced gluon, the non-eikonal
and eikonal cross sections coincide and the ratio becomes one as expected. The ratio shows up to 20% relative weight
of the non-eikonal corrections for �+ = 1 fm, for smaller values of �+ the results show a suppression from a few to up
to 10%.

In Fig. 6, we have plotted the ratio of the non-eikonal to eikonal single inclusive gluon production cross sections,
(33), as a function of pseudorapidity for di�erent values of the transverse momenta of the produced gluon at a fixed
correlation length �+ = 0.5 fm. The ratio of the non-eikonal to eikonal cross sections goes to one with increasing
pseudorapidity as expected, since the relative importance of the non-eikonal corrections should vanish for large values
of ⌘. The results show that up to pseudorapidity ⌘ = 2.5, depending on the value of the transverse momenta of the
produced gluon, the relative weight of the non-eikonal corrections can vary roughly between 15% and 2%. These
results confirm our analytical predictions for the importance of the non-eikonal corrections in certain kinematical
regions.

B. Double inclusive gluon production beyond the eikonal approximation

In this Subsection we consider double inclusive gluon production beyond the eikonal approximation. Our strategy
for this subsection is the same as the calculation performed for single inclusive gluon production in the previous
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(Nc = 3, m = 0.2 GeV, µ2(k , q) = �(2)(k + q) with a projectile size S? = 4GeV�2, and regulate the
denominators that give rise to infrared divergencies by substituting the corresponding squared
transverse momenta l2 ! l2 + m2

g where we have used the numerical value m2
g = 0.2 GeV.)

Tolga Altinoluk Non-eikonal corrections to multi-particle production in the CGC 14/20

Figure 2: Left: ratio of non-eikonal to eikonal single inclusive gluon production cross sections as a function
of the transverse momenta of the produced gluon for different values of the correlation length λ+, at fixed
pseudorapidity η = 2. Right: the same ratio plotted as a function of the pseudorapidity of the produced
gluon for different values of its transverse momenta at a fixed correlation length λ+ = 0.5 fm.

In Fig. (2) on the left, we have plotted the ratio of the non-eikonal to eikonal single inclusive
gluon production cross sections as a function of the transverse momenta of the produced gluon.
The ratio shows up to 20% relative weight of the non-eikonal corrections for λ+ = 1 fm, while for
smaller values of λ+ the results show a suppression from a few to up to 10%. On the right, we
have plotted the ratio of the non-eikonal to eikonal single inclusive gluon production cross sections
as a function of pseudorapidity for different values of the transverse momenta of the produced
gluon at a fixed correlation length λ+ = 0.5 fm. The results show that up to pseudorapidity η =

2.5, depending on the value of the transverse momenta of the produced gluon, the relative weight
of the non-eikonal corrections can vary roughly between 15% and 2%. These results confirm
our analytical predictions for the importance of the non-eikonal corrections in certain kinematical
regions.

The nature of GNE
2 (k�

1 , k�
2 ; L+)

In the double inclusive production X-section:

• certain terms are accompanied by GNE
2 (k�

1 , k�
2 ; L+)

• and their mirror images given by (k2 ! �k2) are accompanied by GNE
2 (k�

1 ,�k�
2 ; L+).

In certain kinematics the behavior of GNE
2 (k�

1 , k�
2 ; L+) di↵ers completely from GNE

2 (k�
1 ,�k�

2 ; L+):
• in the region where k�

1 ⇠ k�
2 we get

GNE
2 (k�

1 , k�
2 ; L+) � GNE

2 (k�
1 ,�k�

2 ; L+)

• This asymmetry created by the non-eikonal e↵ects immediately reminds the asymmetry between the
forward and backward peaks of the ridge structure observed in two particle production.
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respect to the rest of the terms. This is a well known consequence of the fact that some aspects of Nc counting are
di�erent in the dilute and dense limits [76, 77].

Let us comment on the function GNE
2 (k�

1 , k�
2 ; L+), Eq. (46), which is one of the functions that encode the non-

eikonal e�ects in the double inclusive gluon production in the dilute target limit. As it can be seen clearly from the
final expression, Eq. (49) together with Eqs. (50), (51) and (52), the mirror image of the terms that contribute to the
correlated production of two gluons which is given by (k2 ! �k2), is accompanied by GNE

2 (k�
1 ,�k�

2 ; L+). However,
in certain kinematic regimes the behaviour of GNE

2 (k�
1 , k�

2 ; L+) di�ers completely from GNE
2 (k�

1 ,�k�
2 ; L+). Namely,

in the kinematic region where k�
1 ⇠ k�

2 we get

GNE
2 (k�

1 , k�
2 ; L+) � GNE

2 (k�
1 ,�k�

2 ; L+) (58)

which creates an asymmetry between the terms with (k1, k2) and their partners with (k2 ! �k2). This asymmetry
created by the non-eikonal e�ects immediately reminds the asymmetry between the forward and backward peaks of
the ridge structure observed in two particle production.

While a dedicated study of two particle correlations and azimuthal harmonics with non-eikonal corrections is left for
a forthcoming work [74], here we show a few results with the sole purpose of illustratining these points. To compute
them, we have taken Nc = 3, m = 0.2 GeV in (30), µ2(k, q) / �(2)(k + q) (i.e. translational invariance) but with a
projectile size S? = 4 GeV�2, and regulate the denominators that give rise to infrared divergencies by substituting
the corresponding squared transverse momenta l2 ! l2 + m2

g where we have used the numerical value m2
g = 0.2 GeV.

In Fig. 7 we show the ratio of the non-eikonal to eikonal double inclusive gluon production cross sections as a
function of the transverse momenta of the second produced gluon while keeping the transverse momenta of the first
gluon fixed k1 = 1 GeV, for �� = 0 and �� = ⇡ with �� the azimuthal angle between the two produced gluons. In
this plot, we use for the correlation length �+ = 0.5 fm, L+ = 6 fm and the pseudorapidities of the produced gluons
⌘1 = ⌘2 = 2. The result shows that the ratio of the non-eikonal and eikonal double inclusive gluon cross sections is
enhanced for �� = 0 and suppressed for �� = ⇡ as expected by our observation for the behaviour of GNE

2 (k�
1 , k�

2 ; L+)
given in Eq. (58). The relative modification is peaked when the transverse momenta of the second gluon is the same
as the transverse momenta of the first gluon and it varies roughly between 4% and 10% for values of the transverse
momenta of the second gluon 0.5 GeV < k2 < 1.5 GeV.

λ+=0.5 fm, η1=η2=2 and k1=1 GeV
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FIG. 7: The behaviour of the ratio of non-eikonal to eikonal cross sections at �� = 0 and �� = � as a function of the transverse
momenta of the second gluon for a correlation length �+ = 0.5 fm, L+ = 6 fm, rapidities of the produced gluons �1 = �2 = 2
and transverse momenta of the first gluon k1 = 1 GeV.

In Fig. 8 we plot the normalized non-eikonal and eikonal double inclusive gluon production cross sections as a
function of the azimuthal angle between the two produced gluons ��. We again take �+ = 0.5 fm, L+ = 6 fm, the
rapidities of the two produced gluons ⌘1 = ⌘2 = 2 and their transverse momenta k1 = 1 GeV and k2 = 1.2 GeV. These
kinematic values are chosen to enhance the asymmetry coming from the behaviour of function GNE

2 (k�
1 , k�

2 ; L+). The
results are completely symmetric with respect to �� = ⇡/2 in the eikonal case, while an asymmetric behaviour is
seen for the non-eikonal case.
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FIG. 8: The non-eikonal and eikonal normalized double inclusive gluon production cross sections as a function of azimuthal
angle between the two produced gluons �� for �+ = 0.5 fm, L+ = 6 fm, and rapidities �1 = �2 = 2 and transverse momenta
k1 = 1 GeV and k2 = 1.2 GeV of the two produced gluons.

C. Triple inclusive gluon production beyond the eikonal approximation

Let us now proceed with the triple inclusive gluon production cross section. The general expression for the produc-
tion of three gluons, with transverse momenta k1, k2 and k3 and with pseudorapidities ⌘1, ⌘2 and ⌘3 in the dilute-dense
set up reads [55]

d�

d2k1d⌘1d2k2d⌘2d2k3d⌘3
= ↵3

s(4⇡)3
Z

z1z2z3z̄1z̄2z̄3

eik1·(z1�z̄1)+ik2·(z2�z̄2)+ik3·(z3�z̄3)

⇥
Z

x1x2x3y1y2y3

Ai(x1 � z1)A
i(z̄1 � y1)A

j(x2 � z2)A
j(z̄2 � y2)A

k(x3 � z3)A
k(z̄3 � y3)

⌦
⇢a1

x1
⇢a2

x2
⇢a3

x3
⇢b1

y1
⇢b2

y2
⇢b3

y3

↵
P

⇥
⌧nh

Uz1
� Ux1

i h
U †

z̄1
� U†

y1

ioa1b1 nh
Uz2

� Ux2

i h
U†

z̄2
� U †

y2

ioa2b2 nh
Uz3

� Ux3

i h
U†

z̄3
� U †

y3

ioa3b3
�

T

. (59)

As in the case of single and double inclusive gluon production, we first take the dilute target limit which corresponds
to the expansion of the Wilson lines in powers of the background field of the target, Eq. (24). Then the triple inclusive
gluon production cross section reads

d�

d2k1d⌘1 d2k2d⌘2 d2k3d⌘3

����
dilute

= (4⇡)3 ↵3
s

Z

z1z̄1z2z̄2z3z̄3

eik1·(z1�z̄1)+ik2·(z2�z̄2)+ik3·(z3�z̄3)

Z

x1x2x3y1y2y3

⇥Ai(x1 � z1)A
i(z̄1 � y1)A

j(x2 � z2)A
j(z̄2 � y2)A

k(x3 � z3)A
k(z̄3 � y3)

D
⇢a1

x1
⇢a2

x2
⇢a3

x3
⇢b1

y1
⇢b2

y2
⇢b3

y3

E
P

⇥ g6

Z
dx+

1 dx+
2 dx+

3 dx+
4 dx+

5 dx+
6

Z
d2q1

(2⇡)2
d2q2

(2⇡)2
d2q3

(2⇡)2
d2q4

(2⇡)2
d2q5

(2⇡)2
d2q6

(2⇡)2
(T c1T c2)a1b1

(T c3T c4)a2b2
(T c5T c6)a3b3

⇥
D
A�

c1
(x+

1 , q1)A
�
c2
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In the calculation of the single and double inclusive gluon production cross section, we performed the averaging over
the colour charge densities of the projectile first. However, it can also be left for further stages of the calculation for
convenience since the expressions for the triple inclusive gluon production are longer. Therefore, we leave it for later
and perform the integrals over the transverse coordinates which yields
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Figure 3: Left: behavior of the ratio of non-eikonal to eikonal cross sections at ∆φ = 0 and ∆φ = π as
a function of the transverse momenta of the second gluon for a correlation length λ+ = 0.5 fm, L+ = 6
fm, rapidities of the produced gluons η1 = η2 = 2 and transverse momenta of the first gluon k1 = 1 GeV.
Right: non-eikonal and eikonal normalized double inclusive gluon production cross sections as a function of
azimuthal angle between the two produced gluons ∆φ for λ+ = 0.5 fm, L+ = 6 fm, and rapidities η1 =η2 = 2
and transverse momenta k1 = 1 GeV and k2 = 1.2 GeV of the two produced gluons.

In Fig. (3) on the left, we show the ratio of the non-eikonal to eikonal double inclusive gluon
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production cross sections as a function of the transverse momenta of the second produced gluon
while keeping the transverse momenta of the first gluon fixed k1 = 1 GeV, for ∆φ = 0 and ∆φ = π

with ∆φ the azimuthal angle between the two produced gluons. The result shows that the ratio is
enhanced for ∆φ = 0 and suppressed for ∆φ = π . The relative modification is peaked when the
transverse momenta of the second gluon is the same as the transverse momenta of the first gluon
and it varies roughly between 4% and 10% for values of the transverse momenta of the second
gluon 0.5 GeV < k2 < 1.5 GeV. On the right, we plot the normalized non-eikonal and eikonal
double inclusive gluon production cross sections as a function of the azimuthal angle between the
two produced gluons ∆φ . The results are completely symmetric with respect to ∆φ = π/2 in the
eikonal case, while an asymmetric behavior is seen for the non-eikonal case.

To sum up, the results indicate that including the non-eikonal corrections in the double inclu-
sive gluon production cross section has a direct consequence. In the double inclusive production,
changing the azimuthal angle from ∆φ = 0 to ∆φ = π modifies the magnitude of the non-eikonal
effects which causes the breaking of the accidental symmetry of the CGC, which may lead to
non-zero odd azimuthal harmonics [8].
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