Transverse Spin Asymmetries in the $p^{\uparrow} p \rightarrow p \pi^{0} X$ Process at STAR

Christopher Dilks*

for the STAR Collaboration
Pennsylvania State University / Duke University
E-mail: christopher.dilks@duke.edu

A significant sample of $p^{\uparrow} p \rightarrow p \pi^{0} X$ events has been observed at STAR in $\sqrt{s}=200 \mathrm{GeV}$ transversely polarized $p p$ collisions, where an isolated π^{0} is detected in the forward pseudorapidity range $2.65<\eta<3.9$ along with the forward-going proton p, which scatters with a near-beam forward pseudorapidity into Roman Pot detectors. The sum of the π^{0} and the scattered proton energies is consistent with the incident proton energy of 100 GeV , indicating that no further particles are produced in this direction. It is postulated that the forward incident proton may have fluctuated into a $p+\pi^{0}$ system, with an angular momentum correlated with the initial proton spin. The backward-going proton interacts with the $p+\pi^{0}$ system, which then separates such that the π^{0} has a transverse momentum of $\sim 2 \mathrm{GeV} / c$ and the proton has a transverse momentum of ~ 0.2 GeV / c, while the backward proton shatters into the remaining particles X. Correlations between the π^{0} and scattered proton will be presented, along with single-spin asymmetries which depend on the azimuthal angles of both the pion and the proton. This is the first time that spin asymmetries have been explored for this process, and a model to explain their azimuthal dependence is needed.

XXVII International Workshop on Deep-Inelastic Scattering and Related Subjects - DIS2019
8-12 April, 2019
Torino, Italy

[^0]

Figure 1: Left: schematic of $p^{\uparrow} p \rightarrow p \pi^{0} X$. Right: schematic of detectors, the Forward Meson Spectrometer (FMS) for the $\pi^{0} \rightarrow \gamma \gamma$ (red dashed arrows) and the Roman Pots (RP) for the proton (blue solid arrow).

1. Motivation

The transverse single-spin asymmetry, A_{N}, is an observable that probes the spin structure of the proton. It is defined via

$$
\begin{equation*}
A(\phi)=\frac{d \sigma^{\uparrow}(\phi)-d \sigma^{\downarrow}(\phi)}{d \sigma^{\uparrow}(\phi)+d \sigma^{\downarrow}(\phi)}=A_{N} \cos \phi \tag{1.1}
\end{equation*}
$$

where $d \boldsymbol{\sigma}^{\uparrow(\downarrow)}(\phi)$ is a differential cross section, e.g., for π^{0} production, with azimuthal angle ϕ, from a spin-up(down) proton $p^{\uparrow(\downarrow)}$ scattering off an unpolarized proton. The spin asymmetry $A(\phi)$ is modulated by $\cos \phi$, and the amplitude is denoted by A_{N}. If $\phi=0$ represents leftward π^{0} production, then a positive A_{N} indicates spin-up(down) proton scattering favors producing π^{0} s to the left(right).
A_{N} for forward π^{0} s rises with Feynman- x and is independent of center-of-mass energy \sqrt{s} [1,2]; moreover, A_{N} is systematically larger for isolated π^{0} s than for those not as isolated [3, 4]. Several models have been proposed to explain the origin of this large A_{N} [5-8], and although the most promising of these involves a novel twist-3 fragmentation process [8], the origin of the π^{0} isolation dependence remains unclear.

A possible channel for isolated π^{0} production is the $p^{\uparrow} p \rightarrow p \pi^{0} X$ process, as shown schematically in the left panel of figure 1. The forward polarized proton p^{\uparrow} scatters off the backward proton p; the forward proton is deflected slightly with the production of a forward π^{0}, while the backward proton fragments into remnants denoted by X. By energy conservation, the sum of the deflected proton and forward π^{0} energies is equal to or less than the incident proton energy, while the observed π^{0} and proton transverse momentum sum should balance that of X.

Further study is needed to understand the $p^{\uparrow} p \rightarrow p \pi^{0} X$ underlying mechanism, and especially its spin dependence. One possible model assumes the p^{\uparrow} fluctuates into a $p+\pi^{0}$ state, with the π^{0} in the proton periphery; if the π^{0} scatters off another proton such that the $p+\pi^{0}$ state separates, then the π^{0} could scatter with a moderate p_{T}, while the proton recoils at near-beam rapidity. It is thought that the proton angular momentum in the peripheral region is likely dominantly from orbital angular momentum, rather than from parton spin [9]; assuming the orbital angular momentum of the peripheral π^{0} correlates to the proton spin, measurements of spin asymmetries in the $p^{\uparrow} p \rightarrow$ $p \pi^{0} X$ process could be sensitive to proton peripheral angular momentum.

2. Event Selection and Kinematics

The $p^{\uparrow} p \rightarrow p \pi^{0} X$ process has recently been observed at STAR in transversely-polarized protonproton scattering at $\sqrt{s}=200 \mathrm{GeV}$ during the 2015 RHIC run. The π^{0} is measured with the Forward Meson Spectrometer (FMS), a lead-glass electromagnetic calorimeter subtending the forward region $2.65<\eta<3.9$ [10], and the deflected proton with the Roman Pots (RP), hodoscopic siliconstrip trackers downstream of the FMS, at near-beam rapidity [11, 12]. The right panel of figure 1 shows the detectors, with overlaying $\pi^{0} \rightarrow \gamma \gamma$ and proton trajectories.

The π^{0} s were selected from each event's highest-energy photon pair, with a transverse momentum p_{T} above the trigger threshold and energy $E_{1}+E_{2}>12 \mathrm{GeV}$. The invariant mass was constrained to the π^{0} mass region and the photons' energy imbalance to $\left|E_{1}-E_{2}\right| /\left(E_{1}+E_{2}\right)<0.8$. The proton was required to be detected in at least 7 of the 8 available silicon tracking planes, within geometric acceptance cuts, along with a veto on activity in the RPs in the backwards beam direction.

The selected events included a large contribution from accidental coincidences, for example, two collisions occurring in a single proton bunch crossing, where one collision sent a π^{0} to the FMS while the second one was elastic, sending a proton to the RPs. For many of these accidental coincidences, the sum of the π^{0} and proton energies, $E_{\text {sum }}:=E_{\pi}+E_{p}$, is greater than the 100 GeV incident proton energy, which would violate energy conservation had the proton and π^{0} originated from the same collision. The Beam Beam Counters (BBC), scintillators in both the forward and backward directions subtending $2.1<|\eta|<5$, were used with cuts set to reduce the level of accidental coincidences while minimizing the loss of $p^{\uparrow} p \rightarrow p \pi^{0} X$ candidates. Moreover, evidence of hits in the backward BBC as well as in the central-rapidity Time Of Flight (TOF) detector was seen for all $p^{\uparrow} p \rightarrow p \pi^{0} X$ events, indicating breakup of the backward-going proton.

The left panel of figure 2 shows a distribution of $E_{\text {sum }}$, and the right panel shows E_{p} plotted on the vertical axis versus E_{π} on the horizontal. The peak at $E_{s u m}=100 \mathrm{GeV}$ represents the $p^{\uparrow} p \rightarrow p \pi^{0} X$ signal region, since the incident proton has an energy of 100 GeV and, by energy conservation, nothing else scattered in the forward direction; it corresponds to the region between the dashed lines in the right panel. The width of the $100 \mathrm{GeV} E_{\text {sum }}$ peak is dominantly from the FMS energy resolution and an event selection of $90<E_{\text {sum }}<105 \mathrm{GeV}$ was used for asymmetry analysis event selection.

Since the RPs were designed to see elastic and diffractive-like events, the E_{p} distribution has a large peak at $E_{p}=100 \mathrm{GeV}$, which manifests as a band that spans the full E_{π} range. These events along with any others with $E_{\text {sum }}$ above the $p^{\uparrow} p \rightarrow p \pi^{0} X$ signal region are accidental coincidences, and their $E_{\text {sum }}$ distribution likely extends to low $E_{\text {sum }}$ as the dominant source of background under the $p^{\uparrow} p \rightarrow p \pi^{0} X$ peak. The aforementioned BBC cut was tuned to minimize the accidental coincidence background distribution and maximize the $p^{\uparrow} p \rightarrow p \pi^{0} X$ signal purity.

The resulting events have the following kinematics: the π^{0} and proton transverse momenta respectively span $1<p_{T, \pi}<4 \mathrm{GeV} / c$ and $0.1<p_{T, p}<0.45 \mathrm{GeV} / c$, while their energies span $12<E_{\pi}<35 \mathrm{GeV}$ and $68<E_{p}<90 \mathrm{GeV}$. For about $2 / 3$ of the events, the π^{0} and proton are observed back-to-back, with azimuthal angles ϕ_{π} and ϕ_{p} such that $\Delta \phi:=\phi_{\pi}-\phi_{p} \sim \pi$. While the FMS spans the full 2π azimuth, the RP silicon tracking planes are positioned above and below the beam, and $\phi_{p} \sim 0$ and $\phi_{p} \sim \pm \pi$, respectively left and right, are outside the RP acceptance.

Figure 2: Left: distribution of summed π^{0} and proton energies, $E_{\text {sum }}$, shown with the $p^{\uparrow} p \rightarrow p \pi^{0} X$ selection region. Right: proton energy on the vertical axis plotted against π^{0} energy; the region between the dashed lines is the $p^{\uparrow} p \rightarrow p \pi^{0} X$ selection region.

There is a further limit on ϕ_{p}, since the RPs are positioned downstream of a RHIC dipole magnet that bends the outgoing beam to the left. This magnet is tuned to bend beam-energy protons appropriately, so any scattered proton with $E_{p} \sim 100 \mathrm{GeV}$ is likely to pass within the horizontal extent of the RPs. The $p^{\uparrow} p \rightarrow p \pi^{0} X$ events, however, have protons with $E_{p}<90 \mathrm{GeV}$, which are bent more leftward than the 100 GeV protons. Therefore the azimuthal acceptance is biased toward rightward-scattered protons: $\pi / 2<\left|\phi_{p}\right|<\pi$ for 90% of the events. Despite this bias, it is still possible to analyze spin asymmetries which depend on both ϕ_{π} and ϕ_{p}; an upgraded RP system is required to characterize $p^{\uparrow} p \rightarrow p \pi^{0} X$ events with full proton azimuthal acceptance.

3. Asymmetries

Spin asymmetries of the $p^{\uparrow} p \rightarrow p \pi^{0} X$ process can be modulated by two possible azimuthal angles: ϕ_{π} and ϕ_{p}. In general, asymmetries and cross sections can depend on the incident p^{\uparrow} momentum vector \vec{Z}, the observed π^{0} and proton momentum vectors, respectively $\vec{\Pi}$ and \vec{P}, and the p^{\uparrow} spin pseudovector \vec{S} with spin projection $s= \pm \hbar / 2$. Physically allowed terms must be Lorentz invariant and parity conserving, i.e. scalar, which can be formed by geometric products of momenta and spin. Asymmetry contributions must also depend on spin s and be invariant under rotations. For inclusive π^{0} production, the scalar $(\vec{Z} \times \vec{\Pi}) \cdot \vec{S} \propto s \cos \phi_{\pi}$ represents the π^{0} transverse single-spin asymmetry A_{N} of equation 1.1.

In $p^{\uparrow} p \rightarrow p \pi^{0} X$, the additional proton momentum allows for the construction of scalars which depend on both ϕ_{p} and ϕ_{π}. Letting $\vec{L}_{\pi}:=\vec{Z} \times \vec{\Pi}$ and $\vec{L}_{p}:=\vec{Z} \times \vec{P}$, a possible scalar that satisfies the aforementioned requirements and depends on both ϕ_{p} and ϕ_{π} is

$$
\begin{equation*}
\left(\vec{L}_{\pi} \cdot \vec{L}_{p}\right)\left(\vec{L}_{p} \cdot \vec{S}\right) \propto s \cos \phi_{p} \cos \Delta \phi, \tag{3.1}
\end{equation*}
$$

which represents the transverse single-spin asymmetry of the π^{0} within the scattering plane of the observed proton. Letting $A_{p \pi}$ denote the amplitude of this modulation, $\left|A_{p \pi}\right|$ is large when the

Figure 3: Transverse single-spin asymmetry in bins of $\cos \phi_{p} \cos \Delta \phi$. A linear fit is included, with constant term R and slope A, and the resulting fit values in the upper right corner.
proton scatters left or right ($\phi_{p} \sim 0$ or π) and when the π^{0} is close to the proton scattering plane ($\Delta \phi \sim 0$ or π). Other possible scalars were tested, but their measured asymmetries were consistent with zero.

Let $N^{\uparrow(\downarrow)}\left(\phi_{\pi}, \phi_{p}\right)$ denote the yield from a spin-up(down) proton which scatters to a π^{0} and proton with respective azimuthal angles ϕ_{π} and ϕ_{p}. With P denoting the beam polarization, the single-spin asymmetry was measured following equation 1.1 as

$$
\begin{equation*}
A\left(\phi_{\pi}, \phi_{p}\right)=\frac{1}{P} \frac{N^{\uparrow}\left(\phi_{\pi}, \phi_{p}\right)-N^{\downarrow}\left(\phi_{\pi}, \phi_{p}\right)}{N^{\uparrow}\left(\phi_{\pi}, \phi_{p}\right)+N^{\downarrow}\left(\phi_{\pi}, \phi_{p}\right)} . \tag{3.2}
\end{equation*}
$$

Figure 3 shows $A\left(\phi_{\pi}, \phi_{p}\right)$ in bins of $\cos \phi_{p} \cos \Delta \phi$, including a linear fit with a slope that corresponds to the amplitude of the $\cos \phi_{p} \cos \Delta \phi$ modulation, $A_{p \pi}$, which evaluates to $-19 \% \pm 5.2 \%$. The fit's constant term R is included to account for possible nonzero relative luminosity which would systematically shift all data points upward or downward across all $\cos \phi_{p} \cos \Delta \phi$ bins. The vertical error bars represent statistical uncertainty, and the horizontal error bars are the combined propagated π^{0} and proton position uncertainties. The average beam polarization was 56.5% and its uncertainty propagates to a 3.1% systematic uncertainty on the asymmetry scale.

A complementary view of this asymmetry is shown in figure 4 , where the $\cos \phi_{\pi}$ modulation $\left(\pi^{0} A_{N}\right)$ is shown for π^{0} s which scatter near the proton scattering plane (left panel), where $\Delta \phi$ is within $\pi / 6$ radians of 0 or $\pm \pi$, compared to the case where π^{0} s scatter away from the proton scatter plane (right panel), where $|\Delta \phi \pm \pi / 2|<\pi / 6$. When the π^{0} scatters near the proton scatter plane, it shows an asymmetry of $-20 \% \pm 5.7 \%$, whereas when the π^{0} scatters out-of-plane, the asymmetry is nearly consistent with zero, at $4.5 \% \pm 3.8 \%$.

Projections of $A_{p \pi} \cos \phi_{p} \cos \Delta \phi$ onto ϕ_{π}, ϕ_{p}, and $\Delta \phi$ were used to assess the impact of the limited ϕ_{p} acceptance; these are projections of a 2 -dimensional asymmetry to 1 -dimensional asymmetries and can be cross-checked with the corresponding 1-dimensional asymmetries in the data. Assuming the nominal value of $A_{p \pi}=-0.19$, projections of $A_{p \pi} \cos \phi_{p} \cos \Delta \phi$ onto 1-dimensional asymmetries modulated by ϕ_{π}, ϕ_{p}, or $\Delta \phi$ agree with data only when the ϕ_{p} acceptance limitations are applied. While the 1 -dimensional asymmetries are dependent on the ϕ_{p} acceptance limitations, the 2-dimensional $A_{p \pi}$ asymmetry is not and seems to most closely match the data. Several

Figure 4: Transverse single-spin asymmetry in bins of $\cos \phi_{\pi}$ for $\pi^{0} s$ near the proton scattering plane (left) or away (right). A linear fit is included in each.
other possibilities were tested, such as the assumption that the asymmetry is just a π^{0} single-spin asymmetry, however their projections do not agree with the data.

4. Summary

The $p^{\uparrow} p \rightarrow p \pi^{0} X$ process has been observed at STAR, and a $-19 \% \pm 5.2 \%$ asymmetry of the π^{0} in the scattering plane of the proton is observed, via the modulation in equation 3.1. This effect may serve as a probe to the orbital angular momentum of fluctuated π^{0} s in the proton periphery. As far as we know, the spin-dependence of this process has otherwise not yet been explored experimentally and a model is needed to understand it. Moreover, this process should be studied in more detail experimentally, with better azimuthal and kinematic coverage.

References

[1] A. Adare et al., Phys. Rev. D 90, 012006 (2014).
[2] Y. Pan, in proceedings of SPIN 2014.
[3] S. Heppelmann, in proceedings of DIS 2013, PoS (DIS 2013) 240 (2013).
[4] M. Mondal, in proceedings of DIS 2014, PoS (DIS2014) 216 (2014), [nucl-ex/14073715].
[5] D. Sivers, Phys. Rev. D 41, 83 (1990).
[6] D. Sivers, Phys. Rev. D 43, 261 (1991).
[7] J. Collins, S. Heppelmann, and G. Ladinsky, Nucl. Phys. B 420, 565 (1994), [hep-ph/9305309].
[8] K. Kanazawa, Y. Koike, A. Metz, and D. Pitonyak, Phys. Rev. D 89, 111501 (2014).
[9] C. Granados and C. Weiss, arXiv:1905.02742 [hep-ph].
[10] J. Adam et al., Phys. Rev. D 98, 032013 (2018).
[11] S. Bültmann et al., Nucl. Instr. and Meth. A 535, 415 (2004).
[12] R. Sikora, AIP Conference Proceedings 1819, 040012 (2017).

[^0]: *Speaker.

