
P
o
S
(
D
I
S
2
0
1
9
)
0
5
1

Contribution of Double-Logarithmic Pomeron to
structure function F1

B.I. Ermolaev∗

Ioffe Physico-Technical Institute, 194021 St.Petersburg, Russia
E-mail: boris.ermolaev@mail.cern.ch

S.I. Troyan
St.Petersburg Institute of Nuclear Physics, 188300 Gatchina, Russia
E-mail: sergei.troyan@thd.pnpi.spb.ru

Pomeron was introduced in the framework of the phenomenological Regge theory. It governs the
high-energy asymptotics of various hadronic processes and the small-x behavior of F1 in particu-
lar. The best-known contribution to the QCD Pomeron comes from the BFKL equation which
sums Leading Logarithmic (LL) contributions, i.e. the single-logarithmic (SL) contributions
∼ (αs ln(1/x))n multiplied by the overall factor 1/x. The high-energy asymptotics of this resum-
mation is known as the BFKL Pomeron. It predicts that at asymptotically small x, F1 ∼ x−1−∆

where ∆ is the intercept of the BFKL Pomeron. In contrast, we calculate F1 in the Double-
Logarithmic Approximation (DLA), accounting for contributions ∼

(
αs ln2(1/x)

)n
together with

double-logs of Q2 to all orders in αs. Such terms are not accompanied by the overall factor 1/x,
so the small-x asymptotics of their sum is ∼ x−∆DL which looks negligibly small compared to the
BFKL exponent 1+∆. By this reason the DL contribution to Pomeron was offhandedly ignored
by the HEP community. However, we demonstrate that the intercept ∆DL proves to be so large
that its value compensates for the lack of 1/x. This makes the DL Pomeron and BFKL Pomeron
be equally important. Therefore, DL Pomeron should participate in theoretical analysis whenever
the BFKL Pomeron is accounted for.
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1. Introduction

Straightforward theoretical investigation of DIS required QCD calculations at both high and
low energies. While the former can be done with means of Perturbative QCD, the latter is unavail-
able at present. Its impact is mimicked by assumption of QCD factorization which represents the
DIS hadronic tensor Wµν though convolutions of perturbative and non-perturbative components.
The tensor Wµν is parameterized by the DIS structure functions, each of them is also represented
though convolutions. For instance, F1 can be represented as follows:

F1 = Tq ⊗Φq +Tg ⊗Φg, (1.1)

where Tq and Tg are the perturbative components. They correspond to DIS off a quark and gluon
respectively and are calculated in the framework of Perturbative QCD. In contrast, the initial parton
distributions Φq and Φg are essentially non-perturbative objects. They are chosen on basis of
phenomenological considerations, depending on the form of QCD factorization. There are known
three forms of QCD factorization in the literature but here we consider F1 in Collinear Factorization
only.

The standard theoretical instrument for description of Tq and Tg at large x and large Q2 is
DGLAP[1]. DGLAP controls the Q2-evolution of Tq,g, while the contributions ∼ lnn(1/x) are left
accounted in few first orders in αs only. Being unimportant at large x, these contributions become
large at low x, where their total resummation is essential. One example of such a resummation is
done with the BFKL equation[2]. It neglects Tq and sums the series of single-logarithmic contribu-
tions to Tg accompanied by the overall factor 1/x to all orders in αs:

(1/x)
[
1+ c1αs ln(1/x)+ c2(αs ln(1/x))2 + ...

]
, (1.2)

with cn being numerical factors. The asymptotics of the sum in Eq. (1.2) is called the BFKL
Pomeron. It governs the small-x asymptotics of F1:

F(BFKL)
1 ∼ x−1−∆ (1.3)

when x → 0. The intercept ∆ is calculated in LO in Ref. [2] and in NLO in Refs. [3, 4].
Another example of total resummations of the contributions to F1 essential at small x is the

Double-Logarithmic Approximation (DLA) which accounts for the following series:

1+ c′1αs ln2(1/x)+ c′2(αs ln2(1/x))2 + ... (1.4)

The series in Eq. (1.4) compared to Eq. (1.2) misses the very important overall factor 1/x.
This was regarded as an undisputable evidence to neglect (1.4) without performing any calcula-
tions. However, in Ref. [5] we demonstrated that this verdict was false and as a matter of fact the
contribution of the DL series (1.4) was quite essential. We demonstrate below how to compose and
solve the Infra-Red Evolution Equations (IREEs) for Tq,g, and consider their small-x asymptotics.
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2. Evolution Equations for Tq,g

We start with calculating the invariant amplitudes Aq,g of Compton scattering related to Tq,g by
Optical theorem:

Tq =
1
π

ℑAq, Tg =
1
π

ℑAg. (2.1)

Throughout the paper we will use for amplitudes Tq,g as well as for other amplitudes the
asymptotic form of the Sommerfeld-Watson transform frequently addressed as the Mellin trans-
form. This transform is:

Aq,g(w,Q2/µ2) =

∫ ı∞

−ı∞

dω
2ıπ

(
w/µ2)ω ξ (+)(ω)Fq,g(ω,y), (2.2)

where we have introduced the logarithmic variable

y = ln(Q2/µ2) (2.3)

and the positive signature factor

ξ (+)(ω) =−
(
e−ıπω +1

)
/2. (2.4)

In Eq. (2.2) w = 2pq, with p being the external parton momenta, and µ is the factorization scale.
We will calculate Aq,g with composing and solving Infra-Red Evolution Equations (IREEs). This
method was suggested by L.N. Lipatov. The history and detailed description of this method can
be found in Ref. [6]. The method stems from the observation made by V.N. Gribov that the par-
tons with minimal transverse momenta can be factorized with DL accuracy. In regard of Fq,g, the
technical steps in the simplest version of the method are as follows: First, neglect quark masses in
order to treat virtual quarks and gluons equally. It makes all DL contribution to be IR divergent.
Second, introduce the infra-red (IR) cut-off µ in the transverse momentum space to regulate the IR
divergences. Third, trace the evolution of Aq,g with respect to µ choosing the partons with min-
imal transverse momentum k⊥ and use factorization of the k⊥-dependent parts of Ag,g. Applying
the operator −µ2∂/∂ µ2 to Eq. (2.2), we obtain the L.h.s. of the IREEs. The r.h.s. is formed
by convolutions of the factorized amplitudes Aq,g. In the ω-space the IREEs are (see Ref. [5] for
detail):

∂Fq(ω,y)/∂y+ωFq(ω,y) = 1/
(
8π2) [Fq(ω,y) fqq(ω)+Fg(ω,y) fgq(ω)] , (2.5)

∂Fg(ω,y)/∂y+ωFg(ω,y) = 1/
(
8π2) [Fq(ω,y) fqg(ω)+Fg(ω,y) fgg(ω)] .

Eq. (2.5) involves new objects: the parton-parton amplitudes frr′ , with r,r′ = q,g. They describe
the parton-parton scattering. IREEs for them should be constructed independently. Once frr′ are
known, a general solution to Eq. (2.5) can be obtained with regular analytic tools. For specifying
the general solution, we use the matching with amplitudes F̄q,g which describe the same Compton
scattering but the external photon is real. As F̄q,g do not depend on y, IREEs for them are algebraic,
so they can easily be solved. The same is true concering IREEs for frr′ . Both IREEs for these
auxiliary amplitudes and solutions to them can be found in Ref. [5].
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3. Expressions for Tq,g in DLA

Solving Eq. (2.5), combining the solution and (2.2), then using the Optical theorem (2.1)
allows us to obtain expressions for Tq,g in terms of the parton-parton amplitudes:

Tq(ω,y) =
∫ ı∞

−ı∞

dω
2ıπ

(
w/µ2)ω [

C(+)e
Ω(+)y +C(−)e

Ω(−)y
]
, (3.1)

Tg(ω,y) =
∫ ı∞

−ı∞

dω
2ıπ

(
w/µ2)ω

[
C(+)

hgg −hqq +
√

R
2hqg

eΩ(+)y +C(−)
hgg −hqq −

√
R

2hqg
eΩ(−)y

]
,

where hrr′ = 1/(8π2) frr′ ,

Ω(±) =
1
2

[
hgg +hqq ±

√
R
]
, (3.2)

R = (hgg +hqq)
2 −4(hqqhgg −hqghgq) = (hgg −hqq)

2 +4hqghgq, (3.3)

C(+) = e2 hqghgq − (ω −hgg)
(
hgg −hqq −

√
R
)

2G
√

R
, (3.4)

C(−) = e2−hqghgq +(ω −hgg)
(
hgg −hqq +

√
R
)

2G
√

R
,

and

G = (ω −hqq)(ω −hgg)−hgghqg. (3.5)

Explicit expressions for hrr′ can be found in Ref. [5] and substituted in (3.1). Instead of doing
so, we focus on consideration of the small-x asymptotics of Tq,g.

4. Small-x asymptotics of Tq,g

Applying the Saddle-Point method to Eq. (3.1) leads us to the asymptotics T (as)
q,g at x → 0.

It is easy to obtain a similar asymptotics for F1 substituting Eq. (3.1) in (1.1) and applying the
Saddle-Point method to it at x → 0, we arrive at the small-x asymptotics of F1:

F1 ∼ F(as)
1 = κ

(
1
x

)ω0
(

Q2

µ2

)ω0/2

, (4.1)

where ω0 is the leading singularity, or intercept and κ is the impact factor. The only difference
between the asymptotics T (as)

q,g and F(as)
1 is the difference in the impact factors. Eq. (4.1) states

that asymptotically F1 depends on the single variable ζ = Q2/x2. We call Asymptotic Scaling this
confluence of the Q2- and x- dependence. The intercept ω0 was calculated in Ref. [5] under various
approximations. In particular, when the roughest approximation of fixed αs and absence of quark
contributions was used, the intercept ωH was maximal while when αs was running and quark and
gluon contributions were accounted for, the intercept ωS was minimal:
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ωH = 1.35, ωS = 1.07. (4.2)

Eq. (4.2) demonstrates that the Reggeon in (4.1) is a supercritical Pomeron. Eq. (4.1) is the
asymptotics of the DL series (1.4), so the intercepts in (4.2) have nothing in common with ones of
the BFKL Pomeron though ωH is close to the intercept of the LO BFKL Pomeron and ωS almost
coincides with the intercept of the NLO BFKL Pomeron.

No doubt, the asymptotic expression F(as)
1 of Eq. (4.1) looks much simpler than the parent

amplitudes Tq,g of Eq. (3.1). It prompts to use F(as)
1 instead of Fq,g at any x. However, the asymp-

totics should be used in their application region only. In order to evaluate such region we study
numerically the x-dependence of R(as) = T (as)

q /Tq at different Q2. The fastest approach of Tq to its
asymptotics takes place when Q2 = µ2. This plot it shown in Fig. 1.
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Figure 1: Approach of Tq to its asymptotics T as
q at Q2 = µ2.

The asymptotics represent reliably the parent amplitude when R(as) is close to unity. Fig. 1
demonstrates that Ras = 0.9 at x ≈ 5.10−5 providing Q2 = µ2 ≈ 1 Gev2. When Q2 grows, the ap-
proach of Ras to unity is slower. It drives us to conclude that the small-x asymptotics, i.e. Pomerons,
should not be used at x > 10−6 when Q2 ≈ 10 Gev2 or greater.

5. Conclusion

We have calculated the perturbative component of F1 in DLA. Applying the Saddle-Point
method to the results obtained we calculated the small-x asymptotics of F1, which proved to be
a supercritical Pomeron. In the literature, the Pomerons with the large intercepts like ωH are ad-
dressed as hard Pomerons while smaller intercept like ωS are attributed to the soft Pomerons. The
hard and soft intercepts of Eq. (4.2) are not independent. They are related to the accuracy of cal-
culations: The value of the intercept of this Pomeron decreasing with increase of the accuracy of
calculations from ωH down to ωS. The same is true for the BFKL Pomeron. So, the concept of
independent hard and soft Pomeron does not agree with Perturbative QCD.

We think that introducing two or more Pomerons is caused by purely practical needs when
the Pomerons are used well outside their applicability region instead of their parent amplitude. For
example, studying Ras at Q2 = 10 GeV2 yields that the impact of the Pomeron Ras ≈ 0.6 at x= 10−4

, i.e. the impact of the Pomeron is almost twice less than required. The theoretically correct way out
of this situation is to use the parent amplitudes Tq,g instead of the Pomeron. However, if one prefers
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to avoid it and to work with Pomerons, introducing an additional Pomeron becomes necessary,
albeit without theoretical grounds.

We hope that in this talk we have given compelling reasons in favor of importance of the DL
contribution to F1 and its Pomeron asymptotics F(as)

1 for theory of DIS. These objects should be
used in analysis of experimental data on a par with the BFKL Pomeron.
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