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1. Introduction

In the Multi-Regge Kinematics (MRK) for the 2 → 2+ n partonic scattering in QCD, the

final-state partons can be grouped into clusters w.r.t. their rapidity. Different clusters are highly-

separated in rapidity from each-other, so that the typical t-channel momentum transfer is much

smaller than the invariant mass of any pair of final-state clusters. At leading power in t/s, higher-

order QCD corrections to such amplitudes are enhanced by high-energy logarithms logs/(−t). The

Gauge-Invariant Effective Field Theory (EFT) for Multi-Regge processes in QCD [1, 2] has been

introduced as a systematic tool for computation of asymptotics of QCD scattering amplitudes in the

Multi-Regge limit in the Leading Logarithmic Approximation and beyond. The Hermitian version

of this EFT [3, 4] contains all corrections, restoring the unitarity of High-Energy scattering and

therefore provides a framework for studies of High-Energy QCD and gluon saturation phenomena,

alternative to the Balitsky-JIMWLK or Color-Glass Condensate pictures, see Refs. [5, 6] for the

recent work in this direction.

In the High-Energy EFT [1, 2], different rapidity-clusters of final-state particles are produced

by different gauge-invariant subamplitudes – effective vertices. This effective vertices are con-

nected by t-channel exchanges of Reggeized gluons (R±) and Reggeized quarks (Q±), collectively

named as Reggeons – gauge-invariant degrees of freedom of the High-Energy QCD. Eventually,

it should be possible to integrate-out physical quarks and gluons, order-by-order in αs, and for-

mulate the high-energy limit of QCD entirely in terms of Reggeons – Reggeon Field Theory, see

e.g. [6, 7, 8]. Calculation of the one-loop corrections to different effective vertices is a major task

in development of this formalism.

The main technical difficulty in the Higher-Order calculations in High-Energy EFT is the

appearance of Rapidity divergences in loop and phase-space integrals. These divergences arise due

to the presence of “Eikonal” denominators 1/l± in the induced vertices of interactions of Reggeons

with ordinary (Yang-Mills) partons, taken together with kinematical constraints following from

MRK. See Sec. 2 of Ref. [9] for the analysis of the conditions of appearance of rapidity divergences

at one loop. At present, many calculations [9, 10, 11, 12] in the High-Energy EFT has been done

with the use of a variant of “tilted Wilson line” regularization, where the direction vectors (n±µ )

of Wilson lines in the definition of Reggeon-parton interactions are slightly shifted from the light-

cone:

n±µ → ñ±µ = n±µ + r ·n∓µ ,
1

l±
→

1

l̃±
=

1

l±+ r · l∓
, (1.1)

where 0 < r ≪ 1 is the regularization variable. In Ref. [9] we have observed, that to keep the Rg-

interaction gauge-invariant for r 6= 0 one also have to modify the usual MRK kinematic constraint,

stating that four-momentum q1 of R+-Reggeon has only one nonzero light-cone component q+1
and transverse momentum qT1. The kinematic constraint for Reggeon R+, consistent with gauge-

invariance at r 6= 0 is

q̃−1 = q−1 + r ·q+1 = 0. (1.2)

For Reggeized quarks, such modification is not strictly necessary, but it turns out, that many scalar

integrals actually simplify in the kinematics (1.2), so we prefer to keep it both for Reggeized gluons

and quarks.

2



P
o
S
(
D
I
S
2
0
1
9
)
0
6
4

One-loop corrections in the High-Energy EFT Maxim Nefedov

In the present contribution we will discuss two examples of one-loop corrections to Reggeon-

Particle-Particle effective vertices: γ⋆Q+q and gR+g. The first one involves an off-shell photon

(γ⋆), so that the vertex has two scales of virtuality: virtuality of the photon q2 = −Q2 < 0 and

of the Reggeized quark q2
1 = −t1 < 0. More details concerning this example can be found in our

Ref. [9]. The second example already has been considered in Ref. [10], however in this reference

part of diagrams has been but to zero by the gauge choice for external gluons and therefore gauge-

invariance of amplitude and cancellation of power-like dependence on the rapidity-regulator r has

not been verified. We fill this gap in the present contribution.

Our paper has the following structure: In the Sec. 2 integrals appearing in our calculation are

listed and we comment on their rapidity divergences. Explicit expressions for this integrals are

provided in Ref. [9]. In Sec. 3 we review the calculations for above-mentioned examples and in the

Sec. 4 we summarize our conclusions.

2. One-loop rapidity-divergent integrals

It is convenient to categorize one-loop integrals appearing in our calculations according to the

type of their dependence on the rapidity-regulator variable r. Then the simplest integrals containin

only one quadratic and one or two linear propagators:

A[−](p) =
∫

[dd l]

(p+ l)2[l̃−]
, A[−−](p) =

∫

[dd l]

l2[l̃−][l̃−− p̃−]
,

are related with each-other as:

A[−−](p) =
1

p̃−
A[−](p), (2.1)

where [dd l] = (µ2)ε dd l/(iπd/2rΓ), d = 4−2ε , rΓ =Γ2(1−ε)Γ(1+ε)/Γ(1−2ε) and 1/[X ] denotes

the PV-prescription, and both integrals are proportional to r−1+ε .

Integrals

B[−](p) =

∫

[dd l]

l2(p+ l)2[l̃−]
, B[−−](p) =

∫

[dd l]

l2(p+ l)2[l̃−][l̃−+ p̃−]
,

are related as:

B[−−](p) =
2

p̃−
B[−](p), (2.2)

and contain the rε -dependence on the rapidity regulator for p2 = 0 and also term ∝ r−ε appears

for p2 6= 0. Cancellation of power-like terms happens between different diagrams and hence is a

nontrivial dynamical property of QCD.

The integral

B[+−](p) =

∫

[dd l]

l2(p+ l)2[l̃+][l̃−]
,

contributes to one-loop correction to propagators of Reggeized gluon and quark and it contains

only logarithmic rapidity-divergence ∼ logr, related with Reggeization. Similar single-logarithmic

divergence is present in a “triangle” integral:

C[−](−q2
1,−q2,q−) =

∫

[dd l]

l2(q1 + l)2(q1 +q+ l)2[l̃−]
,
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Figure 1: Diagrams contributing to the γ⋆Qq-vertex at one loop. Dashed line with an arrow – Reggeized

quark.
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Figure 2: Diagrams contributing to the gR+g-vertex at one loop. Dashed line – Reggeized gluon, dotted

line – Faddeev-Popov ghost.

which has been computed for the case q2 = 0 in Ref. [10] and for the case q2 6= 0 in the Ref. [9].

For the q2 6= 0 case, the term ∝ r−ε also appears in the integral C[−].

3. One-loop effective vertices

The set of EFT Feynman diagrams, contributing to the one-loop correction to γ⋆Q+q-effective

vertex is shown in the Fig. 1. The result [9]:

Γ
(1)
+µ(q1,q) = ieeq · ū(q+q1)

[

C[Γ] ·Γ
(0)
+µ(q1,q)+C[∆(1)] ·∆

(1)
+µ(q1,q)+C[∆(2)] ·∆

(2)
+µ(q1,q)

]

,

can be expressed in terms of three gauge-invariant Lorentz structures:

Γ
(0)
+µ(q1,q) = γµ +

q̂1n−µ
2q−

, ∆
(1)
+µ(q1,q) =

q̂
q−

(

n−µ −
2(q1)µ

q+1

)

, ∆
(2)
+µ(q1,q) =

q̂
q−

(

n−µ −
qµ

q+

)

,

where Γ
(0)
+µ is the Fadin-Sherman scattering vertex and coefficients are the following:

C[Γ] = −
ᾱsCF

4π

1

2

{

[(d −8)Q2 +(d −6)t1]B(t1)−2(d −7)Q2B(Q2)

Q2 − t1

−2
[

(Q2 − t1)C(t1,Q
2)−q−

(

t1C[−](t1,Q
2,q−)+ (B[−](q)−B[−](q+q1))

)]}

,(3.1)

C[∆(1)] = −
ᾱsCF

4π

(Q2 + t1)

2(Q2 − t1)2

[(

(d −2)Q2 − (d −4)t1
)

B(t1)−2Q2B(Q2)
]

, (3.2)

C[∆(2)] = −
ᾱsCF

4π

Q2

(Q2 − t1)2

[(

(d −6)t1 − (d −8)Q2
)

B(Q2)+2(t1 −2Q2)B(t1)
]

, (3.3)
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were ᾱs = µ−2ε g2
s rΓ/(4π)1−ε is the dimensionless strong-coupling constant, B(t1) and C(t1,Q

2)

are the usual one-loop scalar “bubble” and “triangle” integrals [13]. We observe, that integrals

A[−](q) appearing in the expansion of the second and third diagrams in the Fig. 1 cancel-away.

Also the terms ∝ r±ε cancel between integrals B[−](q), B[−](q+q1) and C[−](t1,Q
2,q−) in Eq. (3.1),

so that only single-logarithmic rapidity divergence is left. In Ref. [9] we have checked, that this

rapidity divergence cancels in the single-Reggeon exchange contribution to the γ⋆ + γ → q+ q̄-

amplitude at one loop and EFT result agrees with MRK limit of one-loop QCD amplitude.

Diagrams contributing to the one-loop correction to gR+g-vertex with on-shell external Yang-

Mills gluons g with helicities λ1 and λ2 and momenta q and q+ q1 are shown in the Fig. 2. This

one-loop correction can be decomposed as:

γ
abc,(1)
λ1+λ2

= igs f abc · ε µ(q,λ1)(ε
∗(q+q1,λ2))

ν
[

C
[

γ
(0)
+

]

· γ
(0)
µ ,+,ν +C [δ+] ·δµ ,+,ν

]

,

where the helicity-conserving (Lipatov’s) and helicity-flip Lorentz structures are:

γ
(0)
µ ,+,ν = 2q−gµν +2n−µq1ν −2n−νq1µ +

t1n−µ n−ν

q−
, δµ ,+,ν = 2q−

[

gµν +
2q1µ q1ν

t1

]

,

while coefficients in front of them read:

C
[

γ
(0)
+

]

= −
ᾱsCA

4π

[

q−t1C[−](t1,0,q−)+B(t1)
]

, (3.4)

C [δ+] =
ᾱs

4π

(d −4)B(t1)

2(d −1)(d −2)
(2nF − (d −2)CA). (3.5)

Eqns. (3.4) and (3.5) coincide with the results of Ref. [10], however in the calculations in this

paper, the diagrams framed in the Fig. 2 where nullified by the gauge-choice for external gluons.

We take them into account, and hence we can check the Slavnov-Taylor identities and trace-out the

cancellation of power-like dependence on the regulator r. Modified kinematical constraint (1.2)

guarantees the gauge-invariance of amplitude in all orders in r, and we observe, that contributions

of integrals A[−](q) and B[−](q) cancel in the O(r1) and O(r0) respectively, while in higher orders

in r (which we eventually drop), coefficients in front of this integrals are gauge-invariant, which

serves as a useful cross-check of the calculation. Cancellation of contributions of this integrals

happens between different diagrams and essentially relies on relations (2.1) and (2.2), while integral

B[−](q1) = 0 due to the constraint (1.2). Therefore all power-like dependence on the rapidity-

regulator cancels in the leading power in r and we are again left with single-logarithmic rapidity

divergence related with gluon Reggeization.

4. Conclusions and discussion

In the present contribution we have reviewed the structure of rapidity divergences in the one-

loop integrals contributing to the one-loop corrections to Particle-Particle-Reggeon effective ver-

tices in the gauge-invariant EFT for Multi-Regge processes in QCD [1, 2] and illustrated their

application on two examples of such vertices: γ⋆Q+q and gR+g. The first one contains two scales

of virtuality: squared transverse momentum of Reggeized quark t1 and virtuality of the photon

Q2, and new Lorentz structure ∆
(2)
+µ appears in the answer for Q2 6= 0. Cancellation of power-like

dependence on rapidity regularization parameter r is observed in both cases, so that only single-

logarithmic rapidity divergence is left in the end.
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