Light charged Higgs boson production at future ep colliders

O. Flores-Sánchez
Departamento de Sistemas y Computación Instituto Tecnológico de Puebla, Av. Tecnológico
num. 420 Col. Maravillas, Puebla, Puebla, C.P. 72220, México.
E-mail: omar.flores@itpuebla.edu.mx

J. Hernández-Sánchez∗†
Author affiliation
E-mail: jaime.hernandez@correo.buap.mx

C. G. Honorato
Facultad de Ciencias de la Electrónica, Benemérita Universidad Autónoma de Puebla, Apdo.
Postal 542, C.P. 72570 Puebla, Puebla, México.
E-mail: carlosghonorato@correo.buap.mx

S. Moretti‡
School of Physics and Astronomy, University of Southampton, Highfield, Southampton SO17
1BJ, United Kingdom and Particle Physics Department, Rutherford Appleton Laboratory,
Chilton, Didcot, Oxon OX11 0QX, United Kingdom
E-mail: s.moretti@soton.ac.uk

S. Rosado
Facultad de Ciencias Físico-Matemáticas, Benemérita Universidad Autónoma de Puebla, Apdo.
Postal 1364, C.P. 72570 Puebla, Puebla, México.
E-mail: sebastian.rosado@gmail.com

We present a recent study of light charged Higgs boson (H^-) production at the Large Hadron electron Collider (LHeC). We study the charged current production process $e^- p \rightarrow \nu_e q H^-$, taking in account the decay channels $H^- \rightarrow b\bar{c}$ and $H^- \rightarrow \tau\bar{\nu}\tau$. We analyse the process in the framework of the 2-Higgs Doublet Model Type-III (2HDM-III), assuming a four-zero texture in the Yukawa matrices and a general Higgs potential. We consider a variety of both reducible and irreducible backgrounds for the signals of the H^- state. We show that the detection of a light charged Higgs boson is feasible, assuming for the LHeC standard energy and luminosity conditions.

XXVII International Workshop on Deep-Inelastic Scattering and Related Subjects - DIS2019
8-12 April, 2019
Torino, Italy

∗Speaker.
†Supported by SNI-CONACYT, VIEP-BUAP and PRODEP, México.
‡Supported through the NExT Institute, STFC CG grant ST/L000296/1 and H2020-MSCA-RISE-2014 grant no.
645722 (NonMinimalHiggs).
1. Introduction

After the discovery of a neutral Higgs boson by the CMS \cite{7} and ATLAS \cite{8} experiments, practically, the Standard Model (SM) has been fully established. However, in several extensions of the Higgs sector Beyond the SM (BSM) which can reproduce the SM-like limit of Electro-Weak Symmetry Breaking (EWSB) using doublet Higgs fields, there appears at least one charged Higgs boson, like in the 2HDM \cite{9}. Amongst the possible H^\pm decay channels, the importance of the $H^\pm \rightarrow cb$ one has been pointed out as a possible viable signal in some models and its detection possibilities have been analysed for the LHC already several years ago \cite{10,11,12,13} and very recently for the LHeC \cite{14,15} as well. Our own studies have been carried out in the context of the 2HDM-III, where both Higgs doublets are coupled to both up- and down-type quarks and Flavour Changing Neutral Currents (FCNCs) can be controlled by a particular texture in the Yukawa matrices \cite{16,17,18}. In this work, we present a new analysis of the signals $H^- \rightarrow b\bar{c}$ and $H^- \rightarrow \tau\bar{\nu}_\tau$ from the process $e^- p \rightarrow \nu_e qH^-$ at the LHeC machine, considering the most recent constraints from experimental data \cite{19}. In the process $e^- p \rightarrow \nu_e qH^-$, q can be a light quark $q_i = u, d, s$ or a b-quark, with the production stage followed by $H^- \rightarrow b^\pm c^\mp$ and $H^- \rightarrow \tau\bar{\nu}_\tau$ (Fig. 1), assuming a leptonic decay of the τ into an electron or muon. When the final state is $H^- \rightarrow c\bar{b}$, the main backgrounds are $\nu 3j$, $\nu 2bj$, $\nu 2jb$ and νtb (Fig. 2). For the final state $H^- \rightarrow \tau\nu_\tau$, these are $\nu j/l$ and $\nu b\bar{\nu}v$ (Fig. 3).

Figure 1: Feynman diagrams for the $e^- p \rightarrow \nu_e H^- q$ process. Here, $\phi_i^0 = h, H, A$, i.e., any of the neutral Higgs bosons of the BSM scenario considered here.

Figure 2: Feynman diagrams for the $\nu_e jjj, \nu_e hjj$ and $\nu_e bbj$ backgrounds (the change $q_l \leftrightarrow l$ and $q_b \leftrightarrow \nu_l$ represents the $\nu_e \nu_l jj$ and $\nu_e \nu_l bb$ backgrounds). Dash-dot lines represent boson fields: (pseudo)scalars and EW gauge bosons.

The plan of this paper is: we present the 2HDM-III in the next section, then show our results and finally conclude.
2. 2HDM-III

For the 2HDM-III, a four-zero-texture is implemented and FCNCs are controlled. Then the most general $SU(2)_L \times U(1)_Y$ invariant scalar potential for two scalar doublets, $\Phi_i^+(\Phi_i^-)$ ($i = 1, 2$), is considered, which is

$$V(\Phi_1, \Phi_2) = \mu_1^2(\Phi_1^+ \Phi_1^-) + \mu_2^2(\Phi_2^+ \Phi_2^-) - \left(\mu_{12}(\Phi_1^+ \Phi_2^-) + h.c. \right) + \frac{1}{2} \lambda_1(\Phi_1^+ \Phi_1^-)^2 + \frac{1}{2} \lambda_2(\Phi_2^+ \Phi_2^-)^2$$

$$+ \lambda_3(\Phi_1^+ \Phi_1^+ \Phi_2^- \Phi_2^-) + \lambda_4(\Phi_1^+ \Phi_2^-)(\Phi_2^+ \Phi_1^-) + \left[\frac{1}{2} \lambda_5(\Phi_1^+ \Phi_2^-)^2 + \left(\lambda_6 \Phi_1^+ \Phi_1^- \right) \right] \chi + \frac{1}{2} \lambda_7(\Phi_2^+ \Phi_2^-) (\Phi_1^+ \Phi_2^-) + h.c. \right), \quad (2.1)$$

where we assume that all parameter of Higgs potential are real, including the Vacuum Expectation Values (VEVs) of the Higgs fields, $v_{1,2}$. The Yukawa Lagrangian is:

$$\mathcal{L}_Y = - Y_1^i \bar{Q}_i \Phi_1 u_R + Y_2^i \bar{Q}_i \Phi_2 u_R + Y_1^d \bar{Q}_i \Phi_2^d d_R + Y_2^d \bar{Q}_i \Phi_1^d d_R + Y_3^d \bar{Q}_i \Phi_1^d d_R + Y_4^d \bar{Q}_i \Phi_2^d d_R + Y_5^d \bar{Q}_i \Phi_1^d d_R + Y_6^d \bar{Q}_i \Phi_2^d d_R$$

where $\Phi_{1,2} = i \sigma_2 \Phi_{1,2}^i$. The fermion mass matrices after EWSB are expressed by: $M_f = \frac{1}{2} (v_1 Y_1^f + v_2 Y_2^f)$, $f = u, d, l$, assuming that both Yukawa matrices Y_1 and Y_2 have the four zero-texture form and are Hermitian $[8, 9, 10]$. Upon diagonalising the mass matrices, one obtains the rotated matrix $Y'_f: [Y'_f]_{ij} = \sqrt{m_i^f m_j^f} / v [\chi^i_{\chi^j}]_{ij} = \sqrt{m_i^f m_j^f} / v [\chi^i_{\chi^j}]_{ij} e^{i \theta_i^f}$, where the χ parameters can be constrained by flavour physics $[8, 9, 10]$, with $v = \sqrt{v_1^2 + v_2^2}$. In agreement with Ref. [5], one can get a generic expression for the fermionic couplings of the charged Higgs bosons:

$$\mathcal{L}_{j, f, \phi} = - \left\{ \frac{\sqrt{2}}{v} \bar{u}_i (m_d X_{ij} P_R + m_u Y_{ij} P_l) d_j H^+ + \frac{\sqrt{2}}{v} \bar{d}_j (m_d X_{ij} P_R + m_u Y_{ij} P_l) u_i H^+ + h.c. \right\} , \quad (2.3)$$

where X_{ij}, Y_{ij} and Z_{ij} are defined as follows:

$$X_{ij} = \sum_{l=1}^{3} (V_{CKM})_{il} \left[\frac{X}{m_d} \delta_{ij} - \frac{f(X)}{\sqrt{2}} \sqrt{m_d \chi^i_{\chi^j}} \right] , \quad (2.4)$$

$$Y_{ij} = \sum_{l=1}^{3} \left[\frac{Y}{\sqrt{2}} \sqrt{m_d \chi^i_{\chi^j}} (V_{CKM})_{il} \right] , \quad (2.5)$$

$$Z_{ij} = \left[\frac{Z}{m_d} \delta_{ij} - \frac{f(Z)}{\sqrt{2}} \sqrt{m_d \chi^i_{\chi^j}} \right] , \quad (2.6)$$

where $f(x) = \sqrt{1 + x^2}$ and the parameters X, Y and Z are arbitrary complex numbers, which can be related to $\tan \beta$ or $\cot \beta$ when $\chi^i_{\chi^j} = 0$ $[5]$, thus one can recovers the standard four types of the 2HDM (Tab. II) and one can write the Higgs-fermion-fermion $(\phi f f)$ couplings as $s_{\text{2HDM-III}}^{\phi f f} = 1$ are arbitrary complex numbers, which can be related to $\tan \beta$ or $\cot \beta$ when $\chi^i_{\chi^j} = 0$ $[5]$, thus one can recovers the standard four types of the 2HDM (Tab. II) and one can write the Higgs-fermion-fermion $(\phi f f)$ couplings as $s_{\text{2HDM-III}}^{\phi f f} = 1$.

1We will call these 2HDM-III ‘incarnations’ 2HDM-III like-χ scenarios, where $\chi = I, II, X$ and Y.

\(g_{2\text{HDM}-\text{any}}^{\phi f f} + \Delta g \)

where \(g_{2\text{HDM}-\text{any}}^{\phi f f} \) is the coupling \(\phi f f \) in any of the 2HDMs with discrete symmetry and \(\Delta g \) is the contribution of the four-zero-texture.

<table>
<thead>
<tr>
<th>2HDM-III</th>
<th>(X)</th>
<th>(Y)</th>
<th>(Z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I</td>
<td>(-\cot \beta)</td>
<td>(\cot \beta)</td>
<td>(-\cot \beta)</td>
</tr>
<tr>
<td>Type II</td>
<td>(\tan \beta)</td>
<td>(\cot \beta)</td>
<td>(\tan \beta)</td>
</tr>
<tr>
<td>Type X</td>
<td>(-\cot \beta)</td>
<td>(\cot \beta)</td>
<td>(\tan \beta)</td>
</tr>
</tbody>
</table>

Table 1: The parameters \(X \), \(Y \) and \(Z \) of the 2HDM-III defined in the Yukawa interactions when \(\chi_f^I = 0 \) so as to recover the standard four types of 2HDM.

We take four Benchmark points (BPs) where the decay channels \(H^- \rightarrow b \bar{c} \) and \(H^- \rightarrow \tau \bar{\nu}_\tau \) can offer the most optimistic chances for detection [8].

- Scenario 2HDM-III like-I: \(\cos(\beta - \alpha) = 0.5 \), \(\chi_{22}^u = 1 \), \(\chi_{23}^u = 0.1 \), \(\chi_{33}^u = 1.4 \), \(\chi_{22}^d = 1.8 \), \(\chi_{23}^d = 0.1 \), \(\chi_{33}^d = 1.2 \), \(\chi_{22}^f = -0.4 \), \(\chi_{23}^f = 0.1 \), \(\chi_{33}^f = 1 \) with \(Y \gg X, Z \).
- Scenario 2HDM-III like-II: \(\cos(\beta - \alpha) = 0.1 \), \(\chi_{22}^u = 1 \), \(\chi_{23}^u = -0.53 \), \(\chi_{33}^u = 1.4 \), \(\chi_{22}^d = 1.8 \), \(\chi_{23}^d = 0.2 \), \(\chi_{33}^d = 1.3 \), \(\chi_{22}^f = -0.4 \), \(\chi_{23}^f = 0.1 \), \(\chi_{33}^f = 1 \) with \(X, Z \gg Y \).
- Scenario 2HDM-III like-X: the same parameters of scenario 2HDM-III like-II but \(Z \gg X, Y \).
- Scenario 2HDM-III like-Y: the same parameters of scenario 2HDM-III like-II but \(X \gg Y, Z \).

3. Results

We assume the LHeC standard Centre-of-Mass (CM) energy of \(\sqrt{s_{ep}} \approx 1.3 \) TeV and luminosity of \(L = 100 \) fb\(^{-1} \). For the signatures \(H^- \rightarrow b \bar{c} \) and \(H^- \rightarrow \tau \bar{\nu}_\tau \), the inclusive event rates are substantial, of order up to several thousands in all four cases. Some BPs, maximising the signal rates are given in Tab. [8]. The scenarios and signatures that we will study are as follows.

- BPs from 2HDM-III like-I, -II and -Y, where the most relevant decay process is \(H^- \rightarrow b \bar{c} \), the final state is \(3j + \cancel{E_T} \).
- BP from 2HDM-III like-X, where the most relevant decays process is \(H^- \rightarrow \tau \bar{\nu}_\tau \), the final state is \(j + l + \cancel{E_T} \), where \(l = e, \mu \) (from a leptonic \(\tau \) decay) and the jet is \(b \)-tagged.

We have used CalcHEP 3.7 [11] as parton level event generator, interfaced to the CTEQ6L1 Parton Distribution Functions (PDFs) [12], then PYTHIA6 [13] for the parton shower, hadronisation and hadron decays and PGS [14] as detector emulator, by using a LHC parameter card suitably modified for the LHeC [15, 16]. We considered a calorimeter coverage \(|\eta| < 5.0 \), with segmentation \(\Delta \eta \times \Delta \phi = 0.0359 \times 0.314 \). Besides, we used Gaussian energy resolution, with \(\frac{\Delta E}{E} = \frac{a}{\sqrt{E}} \oplus b \), where \(a = 0.085 \) and \(b = 0.003 \) for the Electro-Magnetic (EM) calorimeter resolution and \(a = 0.32, b = 0.086 \) for the hadronic calorimeter resolution, with \(\oplus \) meaning addition in quadrature [15, 16]. The algorithm to perform jet finding was a “cone” one with jet radius \(\Delta R = 0.5 \). The calorimeter trigger cluster finding a seed(shoulder) threshold was 5 GeV(1 GeV). We took \(E_T(j) > 10 \) GeV for a jet to be considered so, in addition to the isolation criterion \(\Delta R(j; l) > 0.5 \). Finally, we have mapped the kinematic behaviour of the final state particles using MadAnalysis5 [17].

3
We then implement the following selection criterion:

$$H \nu \nu$$

<table>
<thead>
<tr>
<th>BR($H \rightarrow b\bar{c}$)</th>
<th>BR($H \rightarrow \tau\nu$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m_{H^\pm} = 110$ GeV</td>
<td>$m_{H^\pm} = 110$ GeV</td>
</tr>
<tr>
<td>I</td>
<td>0.3</td>
</tr>
<tr>
<td>II</td>
<td>10</td>
</tr>
<tr>
<td>X</td>
<td>0.01</td>
</tr>
<tr>
<td>Y</td>
<td>10</td>
</tr>
</tbody>
</table>

Table 2: The BPs that we studied for the 2HDM-III in the incarnations like-I, -II, -X and -Y. We present cross sections and BRs at parton level for some H^\pm mass choices.

$$Y \rightarrow (\pm_{\nu}^3, \nu_\nu)$$

Finally, considering the presence of a hadronic not, labelled as $|\eta|$ (tag ν).

$$P_T (b_{tag}) > 30(40) \text{ GeV and } P_T (j_c) > 20(30) \text{ GeV for } m_{H^\pm} = 110, 130(150, 170) \text{ GeV (here, } P_T \text{ is the transverse momentum).}$$

Then, we impose a cut on the pseudorapidity $|\eta(b_{tag}, j_c)| < 2.5$ of both these jets and, finally, select events in which $1.8(2) < \Delta R(j_c; b_{tag}) < 3.4(3.4)$ in correspondence of $m_{H^\pm} = 110, 130(150, 170)$ GeV (where ΔR is the standard cone separation).

III The next cut is related to the selection of the jet of the forward third generic jet (it can be either a light jet or a b-tagged one). Our selection for such a jet is $|\eta| > 0.6$ (with a transverse momentum above 20 GeV).

IV We then implement the following selection criterium: $m_{H^\pm} \sim 20 \text{ GeV} < M(b_{tag}, j_c) < m_{H^\pm}$. Finally, considering the presence of a hadronic W^\pm boson decay, we impose that $M(j_c, j_f) > 80 \text{ GeV} \text{ or } M(j_c, j_f) < 60 \text{ GeV}$ (where j_f labels the forward jet).

Table 3: Significances obtained after the sequential cuts described in the text for the signal process $e^- q \rightarrow \nu_e H^+ b$ followed by $H^- \rightarrow b\bar{c}$ for four BPs in the 2HDM-III like-I, -II and -Y. The simulation is done at detector level. In the column Scenario, the label A-110(130)[150]170 means $m_{H^\pm} = 110(130)[150][170]$ GeV in the 2HDM-III like-A, where A can be I, II and Y.

3.1 The process $e^- q \rightarrow \nu_e H^- b$ with $H^- \rightarrow b\bar{c}$ for the 2HDM-III like-I, -II and -Y

In this subsection we study the final state with one b-tagged jet and one light jet (associated with the secondary decay $H^- \rightarrow b\bar{c}$).

I First, we select only events with exactly three jets in the final state. Then, we reject all events without a b-tagged jet. Then we keep events like $3 j + \not{E}_T$ with at least one b-tagged jet.

II The second set of cuts is focused on selecting two jets (one b-tagged, labelled as b_{tag}, and one not, labelled as j_c) which are central in the detector. First, we demand that $P_T (b_{tag}) > 30(40) \text{ GeV}$ and $P_T (j_c) > 20(30) \text{ GeV for } m_{H^\pm} = 110, 130(150, 170) \text{ GeV (here, } P_T \text{ is the transverse momentum).}$

Then, we impose a cut on the pseudorapidity $|\eta(b_{tag}, j_c)| < 2.5$ of both these jets and, finally, select events in which $1.8(2) < \Delta R(j_c; b_{tag}) < 3.4(3.4)$ in correspondence of $m_{H^\pm} = 110, 130(150, 170)$ GeV (where ΔR is the standard cone separation).

III The next cut is related to the selection of a forward third generic jet (it can be either a light jet or a b-tagged one). Our selection for such a jet is $|\eta| > 0.6$ (with a transverse momentum above 20 GeV).

IV We then implement the following selection criterium: $m_{H^\pm} \sim 20 \text{ GeV} < M(b_{tag}, j_c) < m_{H^\pm}$. Finally, considering the presence of a hadronic W^\pm boson decay, we impose that $M(j_c, j_f) > 80 \text{ GeV} \text{ or } M(j_c, j_f) < 60 \text{ GeV}$ (where j_f labels the forward jet).
We impose the cut

S. Chatchyan et. al. [CMS Collaboration], Phys. Lett. B

Finally, we enforce the last selection by exploiting the transverse mass

G. Aad et. al. [ATLAS Collaboration], Phys. Lett. B

The next set of cuts enables us to select a stiffer lepton and impose conditions on the missing energy

Now we focus our attention on the channel $H^{-} \rightarrow \tau \bar{\nu}_\tau$. To this effect, we look at leptonic τ decays ($\tau \rightarrow l\nu_l\nu_\tau$, with $l = e, \mu$).

I This first set of cuts is focused on selecting events with one b-tagged jet and one lepton, by imposing $|\eta(b_{\text{tag}}, l)| < 2.5$, $P_T(b_{\text{tag}}, l) > 20$ GeV and the isolation condition $\Delta R(b_{\text{tag}}, l) > 0.5$.

II The next set of cuts enables us to select a stiffer lepton and impose conditions on the missing transverse energy which are adapted to the trial H^{\pm} mass. We select events with $P_T(l) > 25(40)$ GeV and $E_T > 30(40)$ GeV for $m_{H^\pm} = 110, 130, 170$ GeV.

III We impose the cut $|\eta(b_{\text{tag}})| > 0.5$. Furthermore, upon defining the total hadronic transverse energy $H_T = \sum_{\text{hadronic}} |P_T|$ in the final state, we select $H_T < 60$ GeV.

IV Finally, we enforce the last selection by exploiting the transverse mass $M_T(l) \geq 2P_T(l)E_T(1 - \cos \phi)$, where ϕ is the relative azimuthal angle between $p_T(l)$ and E_T, a quantity which allows one to label the candidate events reconstructing the charged Higgs boson mass. We make the following selection: $m_{H^\pm} - 50$ GeV < $M_T(l)$ < $m_{H^\pm} + 10$ GeV.

4. Conclusions

Following the application of cuts I–IV, we obtain the signal and background rates in Tab. 3 for the 2HDM-III like-I, -II and -Y incarnations, and Tab. 4, for the like X case. Statistically, significances of the signal \mathcal{S} over the cumulative background \mathcal{B} are very good at low H^{\pm} masses already for 100 fb$^{-1}$ of luminosity. Hence, we confirm that the prospects for light H^{-} detection in the 2HDM-III at the LHeC are excellent.

References

Table 4: Significances obtained after the sequential cuts described in the text for the signal process $e^- q \rightarrow \nu_e H^- b$ followed by $H^- \rightarrow \tau \bar{\nu}_\tau$ for four BPs in the 2HDM-III like-X. The simulation is done at detector level. In the column Scenario, the label X-110(130)[150][170] means $m_{H^\pm} = 110(130)[150][170]$ GeV in the 2HDM-III like-X.

<table>
<thead>
<tr>
<th>Signal</th>
<th>Scenario</th>
<th>Events (raw)</th>
<th>Cut I</th>
<th>Cut II</th>
<th>Cut III</th>
<th>Cut IV</th>
<th>$\langle \mathcal{S}/\sqrt{\mathcal{B}} \rangle$ 100 fb$^{-1}$/100 fb$^{-1}$/5000 fb$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\nu_e H^- q$</td>
<td>X-110</td>
<td>6480</td>
<td>178</td>
<td>124</td>
<td>94, 67</td>
<td>2.41 (7.61)[13.19]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>X-130</td>
<td>3390</td>
<td>75</td>
<td>54</td>
<td>52</td>
<td>35</td>
<td>1.13 (3.58)[6.2]</td>
</tr>
<tr>
<td></td>
<td>X-150</td>
<td>880</td>
<td>6</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>0.09 (0.29)[0.5]</td>
</tr>
<tr>
<td></td>
<td>X-170</td>
<td>20</td>
<td>0.4</td>
<td>0.3</td>
<td>0.2</td>
<td>0.09</td>
<td>0.01 (0.02)[0.04]</td>
</tr>
<tr>
<td>$\nu_e H^- q$</td>
<td>X-110</td>
<td>20170</td>
<td>85</td>
<td>56</td>
<td>23, 13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\nu_e H^- q$</td>
<td>X-130</td>
<td>117559</td>
<td>623</td>
<td>340</td>
<td>122</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>$\nu_e H^- q$</td>
<td>X-150</td>
<td>48845</td>
<td>460</td>
<td>374</td>
<td>149</td>
<td>105</td>
<td>$\mathcal{B} = 763$</td>
</tr>
<tr>
<td>$\nu_e H^- q$</td>
<td>X-170</td>
<td>15000</td>
<td>981</td>
<td>596</td>
<td>207</td>
<td>162</td>
<td>$\sqrt{\mathcal{B}} = 27.62$</td>
</tr>
</tbody>
</table>
Light charged Higgs boson production at future ep colliders

J. Hernández-Sánchez

