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We present a calculation of transverse momentum dependent real emission contributions to split-
ting functions within kT -factorization [1–3], giving special attention to the gluon-to-gluon split-
ting. The calculation is performed in a formalism that generalizes the framework of [4, 5]. The
advantage of the presented approach is that the obtain splitting functions fulfill appropriate limits.
In particular, the gluon-to-gluon splitting function reduces to the leading order BFKL kernel in
the low z limit, to the DGLAP gluon-to-gluon splitting function in the collinear limit as well as to
the CCFM kernel in the angular ordered region. In the last part of the contribution we comment
also on the calculation of virtual corrections to the obtain splitting functions.
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Parton distributions functions (PDFs) are crucial elements of collider phenomenology. In pres-
ence of a hard scale M with M� ΛQCD, factorization theorems allow to express cross-sections as
convolutions of parton densities (PDFs) and hard matrix elements, where the latter are calculated
within perturbative QCD. This was first achieved within the framework of collinear factorization,
where the incoming partons are taken to be collinear with the respective mother hadron. Calculating
hard matrix elements to higher orders in the strong coupling constant, one can systematically im-
prove the precision of the theoretical prediction, by incorporating more loops and more emissions
of real partons. These extra emissions allow to improve the kinematic approximation inherent to the
leading order (LO) description. As an alternative to improving the kinematic description through
the calculation of higher order corrections, one may attempt to account for the bulk of kinematic
effects already at leading order. An important example of such kinematic effects is the transverse
momentum kT of the initial state partons. Schemes which provide an improved kinematic descrip-
tion already at the leading order involve in general Transverse-Momentum-Dependent (TMD) or
‘unintegrated’ PDFs [6]. TMD PDFs arise naturally in regions of phase space characterized by a
hierarchy of scales. A particularly interesting example is provided by the so called low x region,
where x is the ratio of the hard scale M2 of the process and the center-of-mass energy squared s.
The low x region corresponds therefore to the hierarchy s� M2 � Λ2

QCD. In such a kinematical
setup, large logarithms ln1/x can compensate for the smallness of the perturbative strong coupling
αs and it is necessary to resum terms (αs ln1/x)n to all orders to maintain the predictive power of
the perturbative expansion. Such a resummation is achieved by the BFKL [7–9] evolution equa-
tion. Its formulation is based on the so called kT (or high-energy) factorization [10] which is strictly
speaking valid in the high energy limit, s�M2. In this approach one obtains QCD cross-sections
as convolutions of unintegrated gluon density and kT -dependent perturbative coefficients.

While high energy factorization provides a well defined calculational framework the appli-
cability of the results is naturally limited to the low x limit. If the ensuing formalism is naively
extrapolated to intermediate or large x, the framework is naturally confronted with a series of
short-comings, e.g. contributions of quarks to the evolution arise as a pure next-to-leading or-
der (NLO) effect and elementary vertices violate energy conservation. One can account for such
effects by including a resummation of terms which restore subleading, but numerically relevant,
pieces of the DGLAP splitting functions [11–14]. These resummations allow to stablize the low x
evolution in the region of intermediate x∼ 10−2, nevertheless, extrapolations to larger x values are
still prohibited. Moreover, by merely resumming and calculating higher order corrections within
the BFKL formalism, one essentially repeats the program initially outlined for collinear factoriza-
tion: higher order corrections are calculated to account for kinematic effects which are beyond the
regarding factorization scheme. To arrive at a framework which avoids the need to account for
kinematic effects through the calculation of higher order corrections, it is therefore necessary to
devise a scheme which accounts for both DGLAP (conservation of longitudinal momentum) and
BFKL (conservation of transverse momentum) kinematics. Note that the mere definition of such
a scheme is difficult: neither the hard scale of the process (as in DGLAP evolution) nor x (BFKL
evolution) provides at first a suitable expansion parameter, if one desires to keep exact kinemat-
ics in both variables. To overcome these difficulties, we follow here a proposal initially outlined
in [5]. There, the low x resummed DGLAP splitting functions have been constructed following the
definition of DGLAP splittings by Curci-Furmanski-Petronzio (CFP) [4]. The authors of [5] were
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able to define a TMD gluon-to-quark splitting function P̃qg, both exact in transverse momentum and
longitudinal momentum fraction.1 Following observation of [15] two of us generalized this scheme
to calculate the remaining splittings which involve quarks, P̃gq, P̃qg and P̃qq [1]. The computation
of the gluon-to-gluon splitting P̃gg required a further modification of the formalism used in [1, 5]
which we did recently in [3]. In this contribution we summarize the most relevant results obtained
in this work and we comment on calculation of virtual corrections.

1

k

z,q
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1− z

Figure 1: Diagram contributing to the real
P̃gg splitting function at leading order.

The calculation of the P̃gg splitting function fol-
lows the prescription used in our papers [1, 3]. We are
working in the high energy kinematics where the mo-
mentum of the incoming parton is off-shell (see Fig. 1)
and given by: kµ = ypµ + kµ

⊥, where p is a light-like
momentum defining the direction of a hadron beam
and n defines the axial gauge with n2 = p2 = 0 (that is
necessary when using CFP inspired formalism). Ad-
ditionally, the outgoing momenta is parametrized as:
qµ = xpµ +qµ

⊥+
q2+q2

2xp·n nµ and we also use: q̃ = q− zk
with z = x/y.

The TMD splitting function, P̃gg, is defined as

K̂gg

(
z,

k2

µ2 ,ε

)
= z

∫ d2+2εq
2(2π)4+2ε

∫
dq2Pg, in⊗ K̂(0)

gg (q,k)⊗Pg,out︸ ︷︷ ︸
P̃(0)

gg (z,k,q̃,ε)

Θ(µ2
F +q2),

(1)

with Pg being appropriate projection operators and K̂gg the matrix element contributing to the ker-
nel, which at LO is given by the diagram of Fig. 1.

In order to calculate P̃gg splitting we needed to extend formalism of [1, 5] to the gluon case.
This was achieved in [3] by generalizing definition of projector operators and defining appropriate
generalized 3-gluon vertex that is gauge invariant in the presence of the off-shell momentum k.
Definition of the generalized vertex follows from application of the spinor helicity methods to the
high-energy factorization [16–21] and can be obtained by summing the diagrams of Fig. 2, giving:

Γ
µ1µ2µ3
g∗g∗g (q,k, p′) = V λκµ3(−q,k,−p′)dµ1

λ (q)dµ2
κ(k)+ dµ1µ2(k)

q2nµ3

n · p′
−dµ1µ2(q)

k2 pµ3

p · p′
, (2)

with V λκµ3(−q,k,−p′) being the ordinary 3-gluon QCD vertex, and dµ1µ2(q)=−gµ1µ2 + qµ1 nµ2+qµ2 nµ1

q·n
is the numerator of the gluon propagator in the light-cone gauge. More details on the exact proce-
dure can be found in [3].

The definition of the projectors is more involved. We need to ensure that in the collinear limit
the new projectors reduce to the ones introduced by the CFP [4] and that the appropriate high-
energy limit for the gluon splitting is also obtained. A natural approach is to modify only the
incoming projector Pg, in, as the kinematics of the incoming momentum is more general, and keep
the collinear outgoing projector Pg,out unchanged (as the kinematics of the outgoing momentum is

1Hereafter, we will use the symbol P̃ to indicate a transverse momentum dependent splitting function.
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3

1

Figure 2: Feynman diagrams contributing to the amplitude used to define the generalized 3-gluon vertex.

the same). This is what was done by Catani and Hautmann [5,10] and later by us [1] when defining
the projector for the calculation of the quark splitting functions. In that case we used a transverse
projector: kµ

⊥kν

⊥/k2
⊥ which, however, due to the more complicated structure of the 3-gluon vertex

Γ
µ1µ2µ3
g∗g∗g can not be used any more. Instead we use, a more natural (for high-energy factorization),

longitudinal projector given by: Pµν

g, in = y2 pµ pν/k2
⊥. However, in order to satisfy the requirements

of Ps
g = Pg, inPg,out being a projector operator (Ps

g⊗Ps
g = Ps

g) we also need to modify the outgoing
projector. In the end we end up with the following gluon projectors:

Pµν

g, in =−y2 pµ pν

k2
⊥

, Pµν

g,out =−gµν +
kµnν + kνnµ

k ·n
− k2 nµnν

(k ·n)2 . (3)

It is easy to check that now Ps
g⊗Ps

g = Ps
g holds. Also the new outgoing projector is consistent with

the collinear case and one can show that in the collinear limit the difference between y2 pµ pν/k2
⊥

and kµ

⊥kν

⊥/k2
⊥ vanishes when contracted into the relevant vertices. More details are provided in [3].

Using the elements introduced in the previous section we can compute the transverse momen-
tum dependent gluon-to-gluon splitting function. We present here only the final result:

P̃(0)
gg (z, q̃,k) = 2CA

{
q̃4

(q̃− (1− z)k)2 [q̃2 + z(1− z)k2]

[
z

1− z
+

1− z
z

+

+(3−4z)
q̃ ·k
q̃2 + z(3−2z)

k2

q̃2

]
+

(1+ ε)q̃2z(1− z)[2q̃ ·k+(2z−1)k2]2

2k2[q̃2 + z(1− z)k2]2

}
, (4)

or after angular averaging (and setting ε = 0):

P̄(0)
gg

(
z,

k2

q̃2

)
= CA

q̃2

q̃2 + z(1− z)k2

[
(2− z)q̃2 +(z3−4z2 +3z)k2

z(1− z) |q̃2− (1− z)2k2|

+
(2z3−4z2 +6z−3)q̃2 + z(4z4−12z3 +9z2 + z−2)k2

(1− z)(q̃2 + z(1− z)k2)

]
. (5)

Now we can explicitly check the corresponding kinematic limits. In the collinear case this
is straightforward, since the transverse integral in Eq. (1) is specially adapted for this limit. In
particular, one easily obtains the real part of the DGLAP gluon-to-gluon splitting function:

lim
k2→0

P̄(0)
i j

(
z,

k2

q̃2

)
= 2CA

[
z

1− z
+

1− z
z

+ z (1− z)
]
. (6)
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In order to study the high-energy and soft limit it is convenient to change to the following variables:
p̃ = k−q

1−z = k− q̃
1−z , then in the high-energy limit (z→ 0) we obtain:

lim
z→0

K̂gg

(
z,

k2

µ2 ,ε,αs

)
=

αsCA

π(eγE µ2)ε

∫ d2+2ε p̃
π1+ε

Θ
(
µ

2
F − (k− p̃)2) 1

p̃2

where the term under the integral is easily identified as the real part of the LO BFKL kernel.
Additionally, one can check that in the angular ordered region of phase space, where p̃2→ 0, we
reproduce the real/unresummed part of the CCFM kernel [22–24]: 1

z +
1

1−z +O
(

p̃2

k2

)
.

The main result of this paper is the calculation of a transverse momentum dependent gluon-
to-gluon splitting function. The splitting function reduces both to the conventional gluon-to-gluon
DGLAP splitting in the collinear limit as well as to the LO BFKL kernel in the low x/high energy
limit; moreover the CCFM gluon-to-gluon splitting function is re-obtained in the limit where the
transverse momentum of the emitted gluon vanishes, i.e. if the emitted gluon is soft. The derivation
of this result is based on the Curci-Furmanski-Petronzio formalism for the calculation of DGLAP
splitting functions in axial gauges. To address gauge invariance in the presence of off-shell partons,
high energy factorization adapted for axial gauges has been used to derive an effective production
vertex which then could be shown to satisfy current conservation. The next step in completing the
calculation of TMD splitting functions is the determination of the still missing virtual corrections.
For this purpose we will use the same approach as for real emissions. In order to construct gauge
invariant amplitudes in the presence of off-shell external particles we embed them in a more general
process featuring only on-shell external legs [16–21]. In case of the Pqq splitting function the non-
vanishing contributions are given by the diagrams depicted in Fig. 3 Once these contributions are
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Figure 3: Feynman diagrams contributing to the virtual Pqq splitting function.

computed (including renormalization of ultra-violet singularities following a standard prescription
of the MS-scheme), the projectors defined in [3] can be applied to obtain the virtual correction.
This work is ongoing but more cross-checks is needed before presenting the results.

With the complete set of splitting functions at hand, it will be finally possible to formulate an
evolution equation for the unintegrated (TMD) parton distribution functions including both gluons
and quarks.
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