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We present a new local, analytic scheme for the subtraction of infrared singularities at next-to-
next-to-leading order (NNLO) in QCD, which aims at reducing the complexity of the problem
and features remarkable aspects. It works for any infrared-safe observable, it benefits from the
partition of the radiative phase-space into sectors, the subtraction counterterms are local and can
be analytically integrated. All these properties enable an efficient numerical implementation. Our
scheme is currently designed for massless final state radiation only, but its extension to initial
state radiation will allow for predictions at hadron-hadron and lepton-nucleon colliders.

XXVII International Workshop on Deep-Inelastic Scattering and Related Subjects - DIS2019
8-12 April, 2019
Torino, Italy

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:gpellicc@to.infn.it


P
o
S
(
D
I
S
2
0
1
9
)
1
3
0

Local analytic sector subtraction for NNLO QCD calculations Giovanni Pelliccioli

1. Introduction

The computation of NNLO QCD corrections is becoming mandatory to provide accurate fixed-
order predictions for high-energy colliders processes. Beyond leading order (LO), virtual and
real radiation terms contribute. Even if such terms separately generate infrared (IR) singularities,
their combination (assuming UV renormalization) gives finite predictions for physical observables.
However, the complexity of amplitudes structures requires a method to evaluate numerically the
contributions after getting rid of IR divergences, and the subtraction procedure achieves this goal.

At next-to-leading order (NLO) the main subtraction schemes are Frixione-Kunszt-Signer
(FKS) [1] and Catani-Seymour (CS) [2]. At NNLO, a large number of subtraction procedures
have been developed and used to obtain phenomenological results at high-energy colliders results
[3, 4, 5, 6, 7, 8]. New ideas are being developed [9, 10, 11] and slicing methods are already
available [12, 13, 14]. However, the proposed NNLO schemes are characterized by an increased
complexity if compared with the NLO ones, and many of them do not feature desirable aspects
such as analyticity and locality of the counterterms.

In this contribution, we present a new scheme [15] which aims at reducing the complexity of
the subtraction problem at NNLO. The proposed scheme is designed for massless final state radia-
tion, thus in all the following we consider processes with partons in the final state only.

2. NLO

In order to build a new subtraction procedure with minimal structure, we have first analyzed the
most advantageous aspects which have been successfully employed in pre-existing NLO schemes,
with a view to exporting them to NNLO.

Let’s consider a process which features n final state partons at LO. Given an IR-safe observable
X , the NLO correction to the differential cross-section in X receives contribution from a one-loop
virtual term, V , evaluated with n-body kinematics, and from a single-real radiation term, R, eval-
uated with n+ 1-body kinematics. In d = 4− 2ε dimensions, the explicit ε poles of virtual orgin
are exactly cancelled by those arising from the integration of R over the additional radiation phase-
space (KLN theorem). Then the complete NLO cross-section is finite in d = 4. However, due
to the complexity of the virtual and real terms structure (which must be integrated in d = 4− 2ε

dimensions), and due to the complexity of the X-observable, the calculation is in general very com-
plicated. The subtraction procedure allows to perform the entire computation in four dimensions.
It consists in adding and subtracting a local counterterm Kn+1, which features the same IR singu-
larities as R in the one-unresolved regime, but is much easier than R to be integrated analitically
over the unresolved parton phase-space. Relying on phase-space factorization and definining In as
the integral of Kn+1 over the radiative phase-space, we obtain the subtracted NLO correction to the
X distribution, which is

dσNLO

dX
=
∫

dΦn

(
V + In

)
δn(X) +

∫
dΦn+1

(
Rδn+1(X) − Kn+1 δn(X)

)
, (2.1)

where the first and the second integrand are separately finite and integrable in d = 4. The long-
known FKS and CS subtraction schemes which are widely used in the literature have proved very
successfull at NLO, but they feature several bootlenecks when trying to extend them to NNLO.
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Taking inspiration from the advantages of both methods, we have built a new NLO scheme
which features a minimal singularity structure and the partition of radiative phase-space into sec-
tors, as in FKS. At the same time, in a similar fashion as in CS, the proposed counterterms are sum
of terms, each parameterized with a different kinematic mapping, and allow for simplified analytic
integration. All of these aspects can be exported naturally to NNLO.

3. NNLO

The NNLO correction to the differential cross-section in the observable X receives contribu-
tions from a double-real term RR, and from UV renormalised double-virtual VV and real-virtual
RV terms. The subtraction procedure consists in adding and subtracting counterterms reproducing
the singularities of RR and RV . We introduce

∫
dΦn+2

[
K (1) δn+1 +(K (12)+K (2))δn

]
, where K (1)

and (K (12)+K (2)) feature the same one- and two-unresolved limits of RR, respectively. Similarly,
we introduce

∫
dΦn+1 K(RV) δn, where K(RV) has the same phase-space divergences of RV .

Calling I (1), I (2), I (12) and I(RV) the correspondent integrated counterterms, the subtracted
cross section reads

dσNNLO/dX =
∫

dΦn(VV + I (2)+ I(RV))δn

+
∫

dΦn+1 [(RV + I (1))δn+1− (K(RV)− I (12))δn]

+
∫

dΦn+2[RRδn+2− K (1)
δn+1− (K (12)+K (2))δn] . (3.1)

I (1) has the same 1/ε poles as RV , I (12) has the same 1/ε poles as K(RV), while the sum I (2)+ I(RV)

has the same 1/ε poles as VV . The terms (RV + I (1)) and (K(RV)− I (12)) still feature phase-space
singularities in Φn+1, but their difference does not. This ensures that each of the three lines is finite
in d = 4 and suitable for numerical integration.

In addition to the one-unresolved soft Si (soft parton i) and collinear Ci j (collinear partons i, j)
configurations that already appear in NLO calculations, at NNLO two-unresolved configurations
arise: the double-soft Si j (uniformly soft partons i, j), the double-collinear Ci jk (partons i, j,k uni-
formly collinear) and Ci jkl (i, j and k, l separatey collinear), and the soft-collinear SCi jk (soft parton
i and collinear partons j,k). The one- and two-unresolved limits of RR feature a general structure
[16, 17] characterized by universal singular kernels multiplyed by Born-level matrix-elements.

In a similar fashion as at NLO, we partition the double-radiative phase-space by means of sec-
tor functions Wi jkl , (∑i jkl Wi jkl = 1), such that each sector embeds a minimum number of singular
configurations. Sector functions are defined in terms of Lorentz invariants si j = 2pi · p j (indices
run over the n+ 2 final partons), and they obey sum rules which are crucial for the analytic in-
tegration of counterterms. In fact, summing over sectors sharing the same singularity, and taking
the correspondent singular limit on the sum, W functions disappear. Another noticeable feature of
sector functions is that when considering single-unresolved configurations, NNLO sector functions
factorise NLO sector functions, allowing (RV + I (1)) and (K(RV)− I (12)) to be finite in d = 4 NLO
sector by NLO sector.

In each sector Wabcd we define a candidate local counterterm which catches the IR singular
structure of RR in that sector. Let’s take a sector of the type Wi jk j, which contains the following
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singular limits: Si, Ci j, Sik, Ci jk, SCi jk, CSi jk. Note that it is crucial that SCi jk, CSi jk are opposite
hierarchic soft-collinear limits: SCi jk features a parton i going soft more quickly than j,k going
collinear, while CSi jk features two partons i, j approaching the collinear regime more quickly than
i going soft. The candidate counteterms are:

K (1)
i jk j =

[
Si +Ci j(1−Si)

]
RRWi jk j,

K (2)
i jk j =

[
Sik +Ci jk(1−Sik)+(SCi jk +CSi jk)(1−Sik)(1−Ci jk)

]
RRWi jk j, (3.2)

K (12)
i jk j = −

[
Si +Ci j(1−Si)

][
Sik +Ci jk(1−Sik)+(SCi jk +CSi jk)(1−Sik)(1−Ci jk)

]
RRWi jk j,

Similar expressions can be written for other sector topologies (Wi j jk,Wi jkl). The treatment of the
real-virtual counterterm RV will be detailed in a future publication.
Simplifications are possible in the structure of counterterms shown in Eq. 3.2, such as the cancel-
lation of soft-collinear terms SCi jk, CSi jk in the sum K (2)+K (12). We stress that for our scheme it
is crucial that singular limits commute when applied to sector functions or to matrix-elements.

In order to allow for analytic integration of the counterterms, we need to factorize the radiative
phase-space from the Born phase-space. To do so, we choose a specific parameterization for each
term of the counterterms, employing CS mappings which adapt to the Lorentz invariants appearing
in the singular kernels. Thanks to the factorization properties and the sum rules of sector functions,
we are then left with simplified counterterms which can be integrated analytically in d dimensions.
For more details we refer to Ref. [15].

In order to validate our subtraction scheme, we have considered the NNLO corrections to
e+e−→ j j which are proportional to TRCF . We have compared the inclusive cross-section obtained
with the subtraction procedure with the analytic result, finding very good agreement. Even the
renormalization scale dependence is correctly described, as shown in Fig. 1.
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Figure 1: Rescaled NNLO correction as a function of the renormalisation scale.
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4. Conclusions

We have proposed a new NNLO subtraction scheme which features local counterterms that
can be integrated analytically, is valid for any IR-safe observable, benefits from the partition of the
radiative phase-space into sectors, and is numerically efficient. The presented scheme is currently
applicable for processes with (massless) partons in the final state only, but its generalization to
processes with hadrons in the initial state is expected in the early future.
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