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1. Introduction

As has recently been observed [1, 2], some long-range hadronic correlations are present in
proton-proton (pp), proton-lead (pPb) and lead-lead (PbPb) collisions, resulting in final states with
high hadron multiplicity, while these correlations are missing from low-multiplicity collisions of
the same nuclei. More precisely, examinig the correlation function of hadron pairs as a function of
their azimuth angle (∆φ) and rapidity (∆y) differences, one can realize that a “ridge-like” structure
stretches along the ∆y axis around ∆φ = 0 (near-side region) when the number of hadrons created
in the collision is high (around 200 or more), whereas, this “near-side ridge” is not present when
the number of hadrons is no more than 20. The appearance of the near-side ridge might be the sign
of the creation and expansion of a hot, dense quark-gluon plasma (QGP), and if we were able to
cleanse the correlation function from all the effects not related to QGP, we could make predictions
on the initial geometry (impact parameter, nuclear overlap, etc...) of the collision, which induces
pressure gradients that drive the expansion of the QGP. In this paper, we focus on a certain type of
contaminating effect: correlations in a typically non-QGP related situation, a two-jet finalstate, in
which, the initial partons are highly virtual, thus, there is enough phasespace in the initiated jets
for final state particles with large azymuthal angle and rapidity separation. For the description of
the hadronisation of the highly-virtual initial partons, we use the off-shell fragmentation model [3]
sketched in Sec. 2. We present the calculation of the ∆y−∆φ correlations and v2 for two-jet events
in Sec. 3, and compare our results with experimental data in Sec. 4.

2. Off-shell fragmentation

Following [3], we use the microcanonical statistical ensemble for the calculation of the distri-
bution of hadrons stemming from a jet of momentum Pµ at an initial fragmentation scale, which
we choose to be Q0 =

√
P2. As the phasespace of n (massless) hadrons of total fourmomentum Pµ

is

Ωn (Pµ) =
n

∏
i=1

∫ d3pi

p0
i

δ

(
n

∑
j=1

pµ
j −Pµ

)
∝
(
P2)n−2

, (2.1)

the distribution of n′ hadrons stemming from the jet reads

dn,n′ (p1, . . . , pn′ ,P) =
Ωn−n′(Pµ − pµ

1 · · ·− pµ
n′)

Ωn(Pµ)
∼

(
1−

n′

∑
i=1

xi +
n′

∑
i< j

Xi j

)n−n′−2

(2.2)

with xi = 2Pµ pµ
i /P2 and Xi j = 2pµ

i p jµ/P2. As an example, the one-, and two-particle distributions
are

dn,1 (p1,P) =
(n−1)(n−2)

πP2 (1− x1)
n−3 , (2.3)

and

dn,2 (p1, p2,P) =
(n−1)(n−2)2(n−3)

π2P4 (1− x1 − x2 +X12)
n−4 , (2.4)

with prefactors obtained from the normalisation condition ∏n′
i=1
∫ d3pi

p0
i

dn,n′ (p1, . . . , pn′ ,P) = 1. Us-
ing the experimental observation that the hadron multiplicity in jets fluctuates according to the

1



P
o
S
(
D
I
S
2
0
1
9
)
1
3
7

Correlations in Massive Jets Karoly Urmossy

negative-binomial distribution (NBD)

Pn =

(
n+ r−1

r−1

)
p̄n(1− p̄)r , (2.5)

the multiplicity averaged hadron distribution (fragmentation function FF) becomes

d1 (p1,P) = ∑
n

Pn ndn,1 (p1,P) = A1

(
1+

q−1
τ

x1

)−1/(q−1)

−A2 . (2.6)

The parameters of the multiplicity distribution Eq. (2.5) and those of the FF in Eq. (2.6) are re-
lated as r = 1/(q−1)−3 and p̄ = (q−1)/(τ +q−1). Eq. (2.6) (often called the Tsallis-Pareto–
distribution [4, 5, 6]) describes hadron spectra measured in various high-energy collisions [7]-[19].

Using an appriximation, in which, the shape of the FF remains unchanged throughout the scale
evolution, the dependence of its parameters on the fragmentation scale Q =

√
P2 can be obtained:

r(t) =

[
r0 +1

r0

(
t
t0

)a

−1
]−1

,

p̄(t) =

1+
1−p̄0
r0 p̄0

(
t
t0

)b

r0+1
r0

(
t
t0

)a
−1


−1

, (2.7)

where t = ln(P2/Λ2) and t0 = ln(P2
0 /Λ2) with starting scale P2

0 , and Λ being the scale where the
1-loop coupling of the ϕ 3 theory g2 = 1/tβ0 blows up. The additional parameters in Eq. (2.7)
are a = [Π̃(3) + Π̃(1)]/β0 and b = Π̃(3)/β0 with Π̃(ω) = 1/(ω + 1)(ω + 2)− 1/12, being the
Mellin-transform of the 1-loop splitting function in the ϕ 3 theory.

3. Correlations in 2-jet events

In this section, we examine 2-hadron correlations in events with two jets of momenta P1 and
P2 in the final state with N hadrons in total. Assuming that the multiplicity distribution and frag-
mentation function in one jet are independent from those in the other jet, the 2-particle distribution
in a 2-jet event becomes,

p0
1 p0

2
dNsame

d3p1d3p2
=

N

∑
n=n0

Pn(P1)PN−n(P2) [dn,2 (p1, p2,P1)+dn,1 (p1,P1)dN−n,1 (p2,P2)

dn,1 (p2,P1)dN−n,1 (p1,P2)+dN−n,2 (p1, p2,P2)] , (3.1)

with n0 being some minimal number of hadrons that need to be produced within a jet. The su-
perscript “same” denotes that both hadrons stem from the same event, whereas, the distribution of
hadron pairs that stem from two different events is called “mixed”:

p0
1 p0

2
dNmixed

d3p1d3p2
=

N

∑
n1=n0

Pn1(P1)PN−n1(P2) [dn1,1 (p1,P1)+dN−n1,1 (p2,P2)]×

×
N

∑
n2=n0

Pn2(P1)PN−n2(P2) [dn2,1 (p2,P1)+dN−n2,1 (p1,P2)] . (3.2)
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We parametrize the momenta of the hadrons (p1 and p2) and jets (P1 and P2) as

p1,2 = p1,2
T [cosh(y1,2) ,sinh(y1,2) ,cos(φ1,2) ,sin(φ1,2)] ,

P1,2 =
[
M1,2

T cosh(Y1,2) ,M
1,2
T sinh(Y1,2) ,P

1,2
T cos(Φ1,2) ,P

1,2
T sin(Φ1,2)

]
, (3.3)

with jet transverse masses M1,2
T =

√
M2

1,2 +P2
T 1,2 and jet masses M1,2 =

√
P2

1,2. Writing the ra-
pidities and azimuth angles of hadrons as y1,2 = (Y ±∆y)/2 and φ1,2 = (Φ±∆φ)/2, the energy
fractions x1,2 and X12, being the arguments of the distributions (2.3)-(2.4) appearing in Eqs. (3.1)-
(3.2) become

xa
1,2 =

2p1,2
µ Pµ

a

M2
a

=
2p1,2

T
M2

a

[
MTa cosh

(
Y ±∆y

2
−Ya

)
−PTa cos

(
Φ±∆φ

2
−Φa

)]
,

Xa
12 =

2p1
µ pµ

2

M2
a

=
2p1

T p2
T

M2
a

[cosh(∆y)− cos(∆φ)] , a = {1,2} . (3.4)

Using the above parametrisation, the signal (S), the background (B) and the correlations (C) are
constracted from the “same event” and the “mixed event” distributions as

S
(

p1
T , p2

T ,∆y,∆φ
)
=
∫

dY
∫

dΦ p0
1 p0

2
dNsame

d3p1d3p2
,

B
(

p1
T , p2

T ,∆y,∆φ
)
=
∫

dY
∫

dΦ p0
1 p0

2
dNmixed

d3p1d3p2
,

C
(

p1
T , p2

T ,∆y,∆φ
)
=

S
(

p1
T , p2

T ,∆y,∆φ
)

B
(

p1
T , p2

T ,∆y,∆φ
) . (3.5)

Finally, the azymuthal anisotropy is defined by the Fourier components of C:

vn (pT ,∆y) =

√∫
dφ cos(n∆φ)C (pT , pT ,∆y,∆φ)∫

dφ C (pT , pT ,∆y,∆φ)
. (3.6)

4. v2 from long-range correlations

In this Sec., we calculate v2(pT ,∆y) given in Eq. (3.6) averaged over the rapidity range of
|∆y| ∈ [2,4] in a final state with two back-to-back jets in the transverse direction (Y1,2 = 0) of

momenta P1,2 =
(√

M2
1,2 +P2

jet ,0,±PJET ,0
)

. The magnitudes of the threemomenta of the jets are
taken to be PJET = 40 GeV/c in each cases, whereas, the jet masses and numbers of hadrons in the
jets are varied. We compare the calculated results with data, measured in pp collisions at

√
s = 13

TeV with low (10-20) and high (105-150) hadron multiplicity [1].
The top-left pannel of Fig. 1 shows v2 in cases when the two jets have identical masses, and

contain identical numbers of hadrons (10 hadrons per jet, 20 hadrons in total). As the value of jet
masses is varied, it can be seen that the bigger the jet mass, the slower the rise of the v2 curve, and
the larger the pT interval, in which, v2 is non-zero. That is, given a sufficiently large jet mass, we
have particles with large-enough rapidity separation, yielding non-trivial (non-zero) correlations as
well as v2.
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In case of the top-right pannel of Fig. 1, the masses and hadron multiplicities of jets are again
identical. The jet masses are kept fix at a value (MJET = 50 GeV/c2) high-enough to produce a
non-zero v2 for a large pT interval, and in the meanwhile, the number of hadrons NJET in the jets is
varied. It can be seen that an increment of NJET results in a more steeply rising v2 curve, which is
just the opposite of the effect, which we saw in case of the increase of MJET in the top-left pannel
of Fig. 1.

In the bottom pannel of Fig. 1, the masses of the jets are identical, while the hadron num-
bers in jets are let fluctuate according to the mulciplicity distribution Eq. (2.5) (with r = 33 and
p̄= 0.23). We use Eqs. (3.1)-(3.2) to calculate the pair distributions, and let N, the total hadron mul-
tiplicity in the event vary in the interval of N ∈ [10,20], just like in the case of the low-multiplicity
data set in the experimental analysis [1]. This pannel shows that in case of MJET = 25 GeV/c2, the
calculated v2 curve is in accordance with the measured low-multiplicity data.

As v2 (from long-range correlations) measured in low-multiplicity pp events can be reproduced
via back-to-back jets, the above results support the conjecture that no QGP is created in such cases.
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Figure 1: v2 as a function of pT obtained from long-range (|∆y| ≥ 2) ∆y−∆φ correlations. Theoretical
curves are obtained using an off-shell fragmentation model for a two-jet hadronic final state with back-to-
back jets of various masses and hadron multiplicities. Experimental data are from [1].
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