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1. Introduction

The B-meson light-cone distribution amplitude (LCDA) [1] is the key ingredient in the study
of charmless hadronic B-decays under the framework of factorization as it provides crucial non-
perturbative information on the hadronic state. Although the LCDAs are inaccessible from first
principles at present, we can still study their properties such as asymptotic behaviors, evolution,
equations of motion and etc.

In this work, we give a brief summary on the recent developments of B-meson LCDAs and
their applications to the B-meson radiative leptonic decay B→ γ`ν`. This decay channel is gen-
erally viewed as the theoretically cleanest process for extracting the information on the B-meson
LCDAs with the upcoming Belle-II data.

2. B-meson light-cone distribution amplitudes

The B-meson DAs are defined as the matrix elements of the renormalized nonlocal operators
composed of an effective heavy quark field hv(0) and light fields separated by light-like distances.
The two-particle LCDAs arise from the light cone expansion of the nonlocal operator with |x2| �
1/Λ2

QCD [1, 2]:

〈0|q̄(x)Γ[x,0]hv(0)|B̄(v)〉 = −
i
2

FB(µ)Tr
[
γ5ΓP+

] ∞∫
0

dω e−iω(v·x)
{

φ+(ω,µ)+ x2g+(ω,µ)
}

+
i
4

FB(µ)Tr
[
γ5ΓP+/x

] 1
v · x

∞∫
0

dω e−iω(v·x)
{
[φ+−φ−](ω,µ)+ x2[g+−g−](ω,µ)

}
, (2.1)

where [x,0] is the Wilson line connecting the light and heavy quark field that ensures gauge invari-
ance. Such terms are always present but will often be omitted for brevity.

Here and below

nµ = (1,0,0,1) , n̄µ = (1,0,0−1) , vµ =
1
2
(nµ + n̄µ) , (n · n̄) = 2 (2.2)

where vµ is the heavy quark velocity, P+ = 1
2(1+ 6v) projects out the upper components in the heavy

quark spinor, Γ is an arbitrary Dirac structure containing a γ5 matrix. |B̄(v)〉 is the B̄-meson state in
the heavy quark effective theory (HQET) and FB(µ) is the decay constant in HQET which is related
to the physical B-meson decay constant fB. The function φ±(ω,µ) is the two-particle leading- and
subleading-twist B-meson LCDA, respectively [3]. g±(ω,µ) is the two-particle twist-4 and twist-5
LCDA, respectively, generated by the nonvanishing transverse momenta of the light quark.

The LCDAs given in Eq. (2.1) are in the momentum space and are related to the the coordinate
space DAs by Fourier transform

φ±(ω,µ) =
1

2π

∞∫
−∞

dzeiωz
Φ±(z− iε,µ) , Φ±(z,µ) =

∞∫
0

dω e−iωz
φ±(ω,µ) , (2.3)

with the generalization to DAs of higher Fock states evident. The coordinate space LCDAs are
analytic functions of z in the lower half-plane, Im(z)< 0. Note that the upper and lower case letters
are reserved for the coordinate-space and momentum-space distributions, respectively.
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The three-particle B-meson LCDAs are defined similarly by Lorentz decomposition of the
three-particle matrix element 〈0|q̄(nz1)gGµν(nz2)Γhv(0)|B̄(v)〉. This yields eight independent struc-
tures from which we obtain eight LCDAs [4]. For practical purposes, the gluon field strength tensor
Gµν is often contracted with a light-like vector reducing the total number of three-particle LCDAs
to six [5]. The LCDAs defined in this manner are simple w.r.t the Lorentz structures. They are
not, however, convenient for QCD factorization studies as the DAs in this basis have no defi-
nite collinear twist. It is therefore instructive to rewrite the three-particle LCDAs in terms of the
collinear twist t = d− s and conformal spin j = 1

2(d + s) with d being the canonical dimension
of the field and s the light-cone spin projection [2] . Physically, the twist t determines the power
counting in high-energy processes while the conformal spin j dictates the evolution of the LCDA
as well as its asymptotic behavior at small momenta.

The LCDAs are scale-dependent objects which satisfy the renormalization group equation
(RGE). The one-loop evolution kernel for the twist-2 DA φ+ can be found in Ref. [6] and the
evolution kernels for the three-particle LCDAs in coordinate (momentum) space can be obtained
from Refs. [7, 8] ([9]). Recently, the two-loop evolution kernel for φ+ has become available [10].

It was discovered that the evolution equation for φ+ can be solved analytically [11, 12]. Later,
it was demonstrated that the twist-3 and twist-4 LCDAs are also solvable at the large Nc limit [2, 13]
by making use of a “hidden" symmetry of the RGE called complete integrability [14].

The higher twist LCDAs are not completely independent as they are related to one another by
the following equations of motion (EOMs) at tree-level [2, 5],[

z
d
dz

+1
]
Φ−(z) = Φ+(z)+2z2

∫ 1

0
uduΦ3(z,uz) , (2.4a)

2z2G±(z) =−
[
z

d
dz
− 1

2
+ izΛ̄

]
Φ±(z)−

1
2

Φ∓(z)− z2
∫ 1

0
ūduΨ4/5(z,uz) , (2.4b)

Φ−(z) =
(

z
d
dz

+1+2izΛ̄

)
Φ+(z)+2z2

∫ 1

0
du
[
uΦ4(z,uz)+Ψ4(z,uz)

]
, (2.4c)

where Λ̄ = mB−mb. The subscript of each three-particle DA specifies its twist.
It is clear from Eqs. (2.4) that the higher-twist two-particle DAs are completely fixed by the

three-particle DAs and the leading twist DA, and the combination of Eq. (2.4a) and (2.4b) provides
a nontrivial constraint on the three-particle DA.

Neglecting the four-particle DAs systematically due to their high Fock state nature and au-
tonomous evolution at one-loop order, the Lorentz symmetry dictates another relation on twist-4
three-particle DAs [2],

[ψ4 + ψ̃4](ω1,ω2)−ω2
∂

∂ω2
[ψ4 + ψ̃4](ω1,ω2) =−2ω1

∂

∂ω1
φ4(ω1,ω2) . (2.5)

3. B-meson radiative leptonic decay

The B-meson radiative leptonic decay B→ γ`ν` is the cleanest probe for accessing the light-
cone structure of the charged B-meson if the outgoing photon is highly energetic Eγ � ΛQCD. The
decay amplitude reads,

A (B−→ γ`ν̄`) =
GFVub√

2
〈`ν̄lγ| ¯̀γν(1− γ5)ν`ūγν(1− γ5)b|B−〉 . (3.1)
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In case of the final state photon is emitted from the B-meson constituent, the amplitude can be
studied through the following hadronic tensor (correlation function) [15],

Tµν(p,q) = −i
∫

d4xeipx〈0|T{ jem
µ (x) ū(0)γν(1− γ5)b(0)}|B−(p+q)〉

= εµντρ pτvρFV + i
[
−gµν(pv)+ vµ pν

]
FA− i

vµvν

(pv)
fBmB + pµ -terms . (3.2)

where the Lorentz decomposition is applied to obtain the second equation from which two form
factors FV and FA are defined. p and q are the photon and lepton-pair momenta, respectively so
that (p+q) = mBv is the B-meson momentum in its rest frame. jem

µ is the electromagnetic current
generated by the quarks. The coefficient of the contact term vµvν is fixed by the Ward identity.
Terms that are proportional to pµ do not contribute to the decay amplitude by contracting with the
photon polarization vector.

The differential decay width is then given in terms of the two form factors by [15]

dΓ

dEγ

=
αemG2

F |Vub|2

6π2 mBE3
γ

(
1−

2Eγ

mB

)(∣∣∣FV

∣∣∣2 + ∣∣∣FA +
e` fB

Eγ

∣∣∣2) , (3.3)

where the leptonic photon emission has been included.
For large photon energies, the form factors can be written as [15]

FV/A(Eγ) =
eu fBmB

2EγλB(µ)
R(Eγ ,µ)+ξ (Eγ)±∆ξ (Eγ) . (3.4)

The first term is the leading-power contribution generated by φ+ with the quark propagator in the
hard-collinear region, i.e., 1/x2� Λ2

QCD in Eq. (3.1). The QCD corrections to the leading power
contribution are factorized into R(Eγ ,µ) to all orders in αs [16, 17] with the O(αs) result available
in Ref. [15]. λB(µ), which is defined as

1
λB(µ)

=
∫

∞

0

dω

ω
φ+(ω,µ) , (3.5)

is the most important B-meson LCDA parameter in exclusive B-meson decays. The remaining
terms in Eq. (3.4) denote the power-suppressed 1/(2Eγ) and 1/mb corrections with ξ (Eγ) (∆ξ (Eγ))
being the “symmetry preserving (breaking)" part. To our accuracy, ξ (Eγ) and ∆ξ (Eγ) read [18],

ξ = ξ
ht +ξ

soft
(NLO)+ξ

soft
(tw−3,4)+ξ

soft
(tw−5,6) , ∆ξ = ∆ξ

ht +∆ξ
soft
(tw−3,4)+∆ξ

soft
(tw−5,6) . (3.6)

Here ξ ht and ∆ξ ht are generated by twist-3 and 4 LCDAs in the hard-collinear region whereas
ξ soft
(tw−3,4) and ∆ξ soft

(tw−3,4) arise when 1/x2 . Λ2
QCD in Eq. (3.1). In the latter case, the light-cone

factorization breaks down and in principle, LCDAs of all twists can contribute at the same power
in the 1/Eγ expansion. It is, therefore, impossible to include such contributions without additional
assumptions. To this end, we adopt the light-cone sum rules (LCSR) [19]. ξ soft

(NLO) denotes the
soft correction to the leading power contribution to O(αs) [20]. ξ soft

(tw−5,6) and ∆ξ soft
(tw−5,6) are gener-

ated by twist-5 and 6 DAs that can be factorized into a product of lower-twist DAs and the quark
condensate. The relative size of these contributions to their twist-3 and 4 counterparts indicates
whether the twist expansion in the soft region is converging.
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The explicit expressions for each contribution in Eq. (3.6) are available in Ref. [18] and we will
not repeat them here. It is, however, important to note that ξ ht does not have any end-point diver-
gences due to nontrivial cancellations between different higher-twist contributions and EOMs (2.4).
It is certainly interesting to understand this observation in the context of a factorization theorem.

In order to make numerical predictions for the decay width (3.3), we construct a general anstaz
for the higher-twist LCDAs which satisfy the constraints in Eqs. (2.4) and (2.5), and the normal-
ization conditions of the LCDAs (see Eq. (A.39) in [18] for details). Previous models for the
higher-twist LCDAs [2, 21] become special cases of the general anstaz. It is interesting to note that
the general ansatz allows us to obtain ξ htwithout knowing the explicit form of the LCDAs [18].

The soft-corrections, however, require explicit expression for φ+(ω,µ). To this end, we have
proposed three models [18] motivated by recent pion studies [22, 23, 24, 25]. Note that we always
assume the “true" LCDAs are obtained by adding a proper high momentum tail to our models
such that λB and other inverse logarithmic moments are independent of the 1st and 2nd moment of
φ+ [18]. We are then ready to make predictions for the B→ γ`ν` branching ratio with Eγ � ΛQCD.
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Figure 1: Integrated partial branching fraction BR(B→ γ`ν`,Eγ > Emin) for Emin = 1 GeV (left), Emin =

1.5 GeV (middle) and Emin = 2 GeV (right).

The result is shown in Fig. 1 as a function of λB for three values of the photon low-energy
cutoffs with color coding referring to the region covered by different models [18]. The overall
envelope of all three bands reflects the total dependence of the branching ratio to the inverse-
logarithmic moment. The total uncertainty due to input parameters is very minor at 6−9% level.

Recently, the Belle collaboration applied the prediction in Fig. 1 to determine λB = 0.36+0.25
−0.09 GeV

with λB > 0.24 GeV at 90% CL [26] consistent with theory prediction for λB [27]. It is important
to note, however, that this estimate is obtained from extrapolating the low energy data of Eγ and
therefore additional uncertainties may be present.

4. Summary and outlook

The B-meson LCDAs are the nonperturbative ingredient for exclusive B-decays with many
interesting properties. The recent developments of higher-twist DAs enable us to study many B-
decays with higher theory accuracy ([18, 28, 29, 30, 31]). From the theory prediction in Ref. [18],
a more precise value of λB has been extracted. We have shown that the higher-twist contribution to
the B→ γ`ν` decay is free of end-point divergence which invites further studies in the perspective
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of factorization theorem. We demonstrated that the first inverse logarithmic moment has non-
negligible effect on the B→ γ`ν` branching ratio. The recent result for the two-loop kernel of
φ+ [10] calls for studies at the full next-to-next-to-leading-logarithmic accuracy.
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