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1. Introduction

In these proceedings, we will discuss how the PT -integrated ηc hadro-production cross-section
at NLO in αs can set up constraints on the x-dependence of gluon PDFs at low scales. From
the theoretical point of view, ηc (1S0) is the simplest of all quarkonia to deal with and can reveal
much about the bound-state formalism. Throughout the proceedings, in the framework of Non-
Relativistic QCD (NRQCD), we will be dealing with the colour-singlet case, which is the leading
contribution in the v2-expansion of NRQCD. For reviews on quarkonium production, we guide the
readers to Refs. [1, 2, 3, 4].

PDFs (Parton Distribution Functions) depend on both its parton momentum fraction x and the
factorisation scale µF . Different PDF sets use different parametrisations and data in their fits. They
are typically parametrised at a scale around the mass of the charm quark. At higher factorisation
scales as in Higgs production, it is the QCD evolutions governed by the DGLAP equations that will
become relevant. At these scales the gluon PDFs do not depend much on the initial parametrisations
anymore. They become almost identical. For low-scale processes however, hadronic cross-sections
will be particularly sensitive to the initial parametrisation. Therefore we advocate the use of ηc as
a probe to study the σhh dependence on the different PDF parametrisations.

It was the problem of negative cross-section that led us to conduct this study here. We will go
into more detail in the next sections and show that the cross-section dependence on the renormali-
sation and factorisation scales depends much on the choice of the PDF. We will also elaborate on
what has been done in this field in the past and what the prospects for the future are.

2. ηc production and the issue of negative cross-sections

The ηc is a gluon probe at low scales and the simplest of all quarkonia as far as the computation
of hadro-production cross-sections is concerned. The transverse-momentum PT - and the rapidity
y-integrated cross-section is known at NLO in αs since 1992 in collinear factorisation [5]. The first
hadro-production measurement data was released only recently in 2015 by the LHCb collaboration
for PT ≥ 6 GeV at

√
s = 7 and 8 TeV [6]. As can be seen in Fig. 2 of Ref. [7], the NLO Colour-

Singlet Model works well for ηc [8, 9]. The data set does not cover the low-PT region, it could
however be measured down to PT = 0 using the LHC beams in the fixed-target mode, generically
called AFTER@LHC [10, 11]. For ηc and other low scale quarkonia bound-states we encounter
the issue of negative cross-sections in perturbative calculations.

As an example, we show in Fig. 1b a plot from Ref. [12] for the rapidity-differential cross-
section of ηc at central rapidity y = 0 and as a function of hadronic energy

√
s for different scale

choices. For some scale choices, the rapidity-differential cross-section becomes negative at large
hadronic energies.

What are potential sources for negative cross-sections? Is it due to failure of theoretical frame-
works (NRQCD etc.) used to describe quarkonium production? Is it due to truncation intrinsic to
fixed-order calculations? Do we need to go to higher orders (N2LO, N3LO, ...) to solve this issue?

To address these questions, it may be instructive to have a look into the case of open cc pro-
duction at NLO/N2LO. In Ref. [13], the plots from Figs. 16 & 17 show the PT - and y-integrated
cross-section as a function of

√
s for different PDF sets at the default scale choice µR = µF = 2mc.
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What is remarkable is that for some PDF sets the cross-section can be negative at large
√

s. We
are thus tempted to say that the issue of σ ≤ 0 is not specific to the way quarkonium production
is treated, but a more general one that involves low-scale physics. Concerning the truncation in
fixed-order calculations, the plots demonstrate that when negative cross-sections occur already at
NLO, the situation becomes even worse at N2LO, hence it is not a problem of truncating an infinite
series to a fixed-order. At this stage, we would like to stress that in Ref. [13], the authors attribute
the issue of negative cross-sections to negative gluon PDFs at low scales and rather low-x region,
however the differential cross-section dσ/dy is not yet available at N2LO and a full scale analysis
has not yet been performed. Therefore one cannot rule out the possibility of negative cross-sections
with positive PDFs for open cc production.

We may also want to consider whether the issue could be related to collinear factorisation
itself. Do we need to include resummations of logPT ? Is it due to an improper choice of renormal-
isation µR and factorisation µF scales? Or is it related to Parton Distribution Functions (PDFs)?
We will address these questions in the next sections.

(a) Asymptotic (τ0 = M2/s → 0) behaviour of the
proton-proton or proton-antiproton cross section for
various terms of the gluon-gluon subprocess (z =

M2/ŝ = τ0/τ) and two extreme choices of the gluon
distribution function. Taken from Schuler’s Review
[14], 1994.
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and µF with CTEQ6M, taken from Ref. [12]
Figure 1

3. Collinear factorisation & PDF parametrisation

In collinear factorisation, the cross-section for hadron-collision can be written as,

σpp = ∑
i j

∫
dx1dx2 fi/p(x1,µF) f j/p(x2,µF) σ̂i j(µR,µF ,x1,x2, ŝ = sx1x2), (3.1)

where fi/p(x1,µF) are the PDFs and σ̂i j is the partonic cross-section for the relevant channel i j
where i and j are the partons. The hadronic cross-section has a dependence on both µR and µF . In
particular, the µR-dependence implicitly comes from the strong coupling constant αs and explicitly
from ratios of dimensionful parameters at higher orders that origin from dimensional regularisation.
The µF -dependence occurs in both PDFs and explicitly inside the partonic cross-section via the
Altarelli-Parisi terms, which are the counterterms to absorb the remaining collinear divergences
into the PDFs.
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We will now give a brief historical summary on what has been done in this field within collinear
factorisation in the past. In 1992, Kühn & Mirkes [5] computed the pseudo-scalar toponium cross-
section at NLO. In 1994, G. Schuler published a Review [14] in which he confirmed the result by
Kühn & Mirkes and he pointed out for the first time issues with negative cross-sections for quarko-
nia at large

√
s. He found an explanation why for some PDF choices there is a strong/weak scale

dependence. Mangano and Petrelli in their 1996 Proceedings [15] arrived to the same conclusions.
The result by Kühn & Mirkes was confirmed independently by Petrelli et al [16] in 1997.

3.1 Partonic high-energy limit

In his Review, Schuler identified two potential sources of negative cross-sections, the small-x
behaviour of the gluon and sea-quark distributions and the behaviour of the partonic cross-section
far from threshold, where threshold is the limit z = M2/ŝ→ 1. Both Schuler and Mangano found
that the partonic cross-section at NLO in the partonic high-energy limit z = M2/ŝ→ 0 has the
general structure,

lim
z→0

σ̂gg = 2CA
αs

π
σ̂Born

(
log

M2

µ2
F
−CJ

)
, lim

z→0
σ̂qg =CF

αs

π
σ̂Born

(
log

M2

µ2
F
−CJ

)
, (3.2)

where CJ is a process-dependent quantity and M = 2mc. The term logM2/µ2
F is a universal factor

that originates from the Altarelli-Parisi counterterms. CJ however is a quantity that uniquely comes
from the real corrections and hence depends on the specific process. In the case of ηc we have that
CJ = 1, for χc(

3P0,2) we have respectively C0 = 43/27 and C2 = 53/36. We would like to stress
at this stage that limz→0 σ̂ is particularly sensitive to the factorisation scale µF . For the ηc, CJ = 1
indicates that the cross-section at this limit is already negative for µF = M which is admittedly
a reasonable scale choice. Variations from this scale will either make the limit more negative
or in some cases positive. In fixed-order calculations, we however expect the result to be weakly
dependent on µR and µF only. As a side note, we point out that the ratio of the qg- to the gg-channel
approaches the value CF/(2CA) = 2/9 for z→ 0. Note that this ratio is process-independent, hence
it is the same for both bound and open cc production and Higgs production with finite mt as well.

As it will be clear in a moment, Eq. 3.2 allows us to understand the behaviour of the hadronic
high-energy limit. As a simple toy model for the gluon PDFs g(x), Schuler considered the functions
g(x) = 1/x and g(x) = 1/x1.5. The table (see Fig. 1a) taken from his Review [14], shows how
different partonic terms (δ (1− z), zk, ...) of σ̂gg translate to hadronic ones for both these PDFs.

From Fig. 1a we can conclude that with g(x) = 1/x, the constant terms scale stronger with
energy

√
s than the terms δ (1− z) and zk at very large energies

√
s→ ∞. This brings us back to

the partonic high-energy limit where it is precisely the constant terms of σ̂ that survive in Eq. 3.2
with z→ 0. Therefore with this ’flat’ gluon PDF, the hadronic cross-section is sensitive to the
factorisation scale µF and in particular to the sign of limz→0 σ̂ . This ultimately determines the
behaviour of the cross-section at large

√
s.

For the second extreme parametrisation 1/x1.5 however, all partonic terms scale in the same
way at large

√
s, therefore real corrections scale in the same way as threshold contributions (LO

plus virtual corrections). The sensitivity on the factorisation scale µF is now diminished. Conse-
quently, steeper gluon PDFs will damp down the real corrections which result into the dominance
of threshold contributions at large

√
s. The NLO yield will therefore follow the shape of the LO
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cross-section. We can conclude this section by stating that due to the low scale process, the cross-
section crucially depends on the initial PDF parametrisation.

4. K-factor for different PDFs
Following our discussion on the sources of negative cross-sections, we will now illustrate in

this section how the ηc hadronic cross-section can depend strongly on the initial PDF parametri-
sation. In the first part of this section, we will display the K-factor, which is the ratio of the NLO
cross-section over the LO one, of the ηc cross-section differential at central rapidity y = 0. In the
second part, we will then briefly discuss the shape in rapidity y of the cross-section.

For the K-factor we will consider five different PDF parametrisations [17, 18, 19] (we will
make use of the abbrevations in brackets), CT14nlo_NF3 (CT14), NNPDF31sx_nlo_as_0118
(NNPDFsx), NNPDF31sx_nlonllx_as_0118 (NNPDFsxNLL), MRS(A’), MRS(G). In order to dif-
ferentiate between the PDF choices, we will make use of two different scale configurations,
µR = µF = 2mc = 3GeV and µR = mc = 1.5GeV with µF = 2mc = 3GeV. By lowering the renor-
malisation scale µR in the second configuration, we are enhancing QCD corrections. The objective
is to see the impact of the different gluon PDFs on the real corrections and, in particular, the con-
stant terms that survive in the partonic high-energy limit (see Eq. 3.2).

MRS(G), g(x)∼ 1/x1.30

MRS(A’), g(x)∼ 1/x1.14

MRS(G), g(x)∼ 1/x1.30

MRS(A’), g(x)∼ 1/x1.14
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Figure 2: K-factor at y = 0 as a function of
√

s and with different PDF choices. Default scale choice used
µR = µF = 2mc = 3GeV (left). Alternative scale choice used µR = mc = 1.5GeV, µF = 2mc = 3GeV (right).

Above, in Fig. 2, we plot the evolution of the K-factor as a function of
√

s for both scale
configurations. One observes that the K-factor decreases as we approach higher energies. We can
trace back this reduction of the K-factor to the real corrections that have negative contributions.
In the case of the second scale configuration, for which QCD corrections are enhanced, the cross-
section convoluted with each PDF set except one in our selection will give negative K-factors for√

s as low as 2-5 TeV. As discussed above, these are very sensitive to limz→0 σ̂gg that with the choice
of µF = M = 2mc is negative. However the cross-section convoluted with MRS(G) stands out with
its remarkable stable K-factor for both scale configurations. This is no surprise since MRS(G) has
a very steep gluon PDF (g(x)∼ 1/x1.30) and thus unlike the other PDF sets is much less sensitive to
the partonic high-energy limit (see Eq. 3.2). As elaborated in the previous section, for MRS(G), it
is therefore the ’positive’ threshold contributions that dominate in these energy regions (albeit not
in
√

s→ ∞ since 1.3 < 1.5). We further note that at large
√

s both NNPDFsxNLL and MRS(A’)
(g(x)∼ 1/x1.14) have very similar K-factors.
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As a side note, we mention here that NNPDFsxNLL has a steeper gluon PDF at low x than
NNPDFsx and therefore gives slightly better results than the latter one. This increase in low x for
the NLL extension can be explained by the fact that NLL contributions are slowing down DGLAP
evolution. Therefore when the PDF is fitted to experimental data at larger factorisation scales, in
order to accommodate a slower evolution, the initial parametrisation must become steeper such that
the slower evolution matches the data.

Let us now briefly discuss the shape of the rapidity-differential cross-section at fixed energies√
s. Due to lack of space, we give here only a qualitative description for the case of CT14. As

before, we used the same two scale configurations. For µR = µF = 2mc, dσ/dy at NLO starts to
increase slightly with rapidity as we go to higher

√
s. As for the other scale choice, for which

QCD corrections are enhanced, the curves become unphysical for large
√

s where they start with a
negative dσ/dy at y = 0 before rapidly getting positive at larger y.

Apart from constraining PDFs such that the cross-section is positive, we can thus certainly
impose stronger constraints based on the two following criteria,

• dσ/dy should increase with increasing energy
√

s at any fixed rapidity y,
• dσ/dy should in general decrease with increasing rapidity y at any fixed energy

√
s.

5. Conclusions
Low-scale processes such as ηc production depend crucially on the initial PDF parametrisa-

tion. If the gluon PDFs are not steep enough, real corrections can dominate and induce unphysical
negative cross-sections. In addition to the positivity constraint of dσ/dy ≥ 0, we have to impose
that the cross-section increases with increasing energy at any fixed rapidity. Furthermore, since
a NLO correction should not modify the rapidity-shape of the LO significantly, we could further
make the constraint (less strong than the former one) that dσ/dy decreases in general with increas-
ing rapidity.
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