Explaining the Flavor Anomalies with a Vector Leptoquark (Moriond 2019 update)

Andreas Crivellin
Paul Scherrer Institut, CH–5232 Villigen PSI, Switzerland
Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
E-mail: andreas.crivellin@cern.ch

Francesco Saturnino
Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics,
University of Bern, CH-3012 Bern, Switzerland
E-mail: saturnino@itp.unibe.ch

Several experiments revealed intriguing hints for lepton flavor universality (LFU) violating new physics (NP) in semi-leptonic B meson decays, mainly in $b \to c \tau \nu$ and $b \to s \ell^+ \ell^-$ transitions at the $3 - 5 \sigma$ level. Leptoquarks (LQ) are prime candidates to address these anomalies as they contribute to semi-leptonic decays already at tree level while effects in other flavor observables, agreeing with the standard model (SM), are loop suppressed.

In these proceedings we review the vector leptoquark $SU(2)_L$ singlet, contained in the famous Pati-Salam model, which is able to address both $b \to c \tau \nu$ and $b \to s \mu^+ \mu^-$ data simultaneously. Due to the large couplings to tau leptons needed to account for the $b \to c \tau \nu$ data, sizable loop effects arise which we include in our phenomenological analysis. Updating our result of Ref. [1] with the recent measurements of LHCb [2] and BELLE [3, 4] we find an even better fit to data than before.

XXVII International Workshop on Deep-Inelastic Scattering and Related Subjects - DIS2019
8-12 April, 2019, Torino, Italy

*The work of A.C. is supported by a Professorship Grant (PP00P2_176884) of the Swiss National Science Foundation.
†Speaker.
‡I thank the organizers of the DIS2019 in Turin for giving me the opportunity to present my work, which is supported by the Swiss National Foundation under grant 200020_175449/1. We are very grateful to Joaquim Matias and Bernat Capevilla for providing us with the fit necessary for the $b \to s \ell^+ \ell^-$ region in Fig. 2. These proceedings match the ones of Andreas Crivellin for Moriond QCD & High Energy Interactions (23-30 March 2019, La Thuile, Italy) and are submitted as a common arxiv version.
1. Introduction

While so far the LHC has not detected any particles beyond the ones present in the Standard Model (SM), intriguing hints for LFU violation in semi-leptonic B-meson decays were accumulated in several (classes of) observables:

$b \to s\ell^+\ell^-$

In these flavor changing neutral current transitions, measurements of the ratios

$$R(K^{(*)}) = \frac{\text{Br}[B \to K\mu^+\mu^-]}{\text{Br}[B \to Ke^+e^-]}$$

show sizable deviations form their respective SM prediction. While the newest measurement of $R(K)$ by the LHCb collaboration [2] shows a deviation of $2.5\,\sigma$ from the SM, the Belle result for $R(K^{(*)})$ is consistent with the SM [3]. However, due to the larger errors, this result also agrees with previous LHCb measurements of $R(K^{(*)})$ which deviate from the SM [5] in the same direction as $R(K)$. Taking into account all other $b \to s\mu^+\mu^-$ observables (like the lepton flavor universal observable P_5' [6]), the global fit prefers various NP scenarios above the $5\,\sigma$ level [7] compared to the SM, also when the newest measurements are taken into account [8–11].

In order to resolve the discrepancy in the neutral current transitions, an effect of $O(10\%)$ is required at the amplitude level. Since this flavor changing neutral current (FCNC) is suppressed in the SM as it is only induced at one loop level, a small NP contribution is already sufficient. In a global fit one finds a preference for scenarios like $C_9^{\mu\mu} = -C_{10}^{\mu\mu}$ (i.e. a left-handed current coupling to muons only) [8]. Such an effect is naturally obtained at tree-level with the vector LQ $SU(2)$ singlet [1,12–32]. However, a $C_9^{\mu\mu} = -C_{10}^{\mu\mu}$ effect complemented by a flavor universal effect in C_9 gives an even better fit to data [8,33]. As we will see, this is exactly the pattern that arises in our model.

$b \to c\tau\nu$

There are also indications for LFU violation in charged current transitions, namely in the ratios

$$R(D^{(*)}) = \frac{\text{Br}[B \to D^{(*)}\tau\nu]}{\text{Br}[B \to D^{(*)}\ell\nu]}$$

where $\ell = \{e,\mu\}$. While the newest measurements from Belle [4] agree with the SM prediction, including previous measurements by BaBar, Belle and LHCb still yield a deviation of $3.1\,\sigma$ [34] from the SM prediction. Furthermore there is also a measurement of the ratio $R(J/\Psi) = \frac{\text{Br}[B_c \to J/\Psi\tau\nu]}{\text{Br}[B_c \to J/\Psi\ell\nu]}$ exceeding its SM prediction [35].

Also here a NP effect of $O(10\%)$ is needed at the amplitude level. However, since $b \to c\tau\nu$ transitions are mediated at tree level by the exchange of a W boson in the SM, the NP effect needs to be large. This means that NP should contribute at tree level with sizable couplings and at a not too high NP scale. Here, the best single particle solution is the vector LQ $SU(2)$ singlet [1,12–32] since it does not give a tree-level effect in $b \to s\nu\nu$ processes and provides a common rescaling of $R(D)$ and $R(D^{*})$ with respect to the SM prediction.
Interestingly, assuming an explanation of $b \to c \tau \nu$, our model predicts the right size and sign of the effect in $C^\ell_{9, sb}$ and C^b_{7b} needed to explain $b \to s \ell^+ \ell^-$ data.

2. The Pati Salam vector leptoquark as combined solution to the anomalies

The vector Leptoquark $SU(2)_L$ singlet with hypercharge $-4/3$, arising in the famous Pati-Salam model [36], is a prime candidate to explain both the anomalies in charged current and neutral current B decays simultaneously [12–14, 17–20]. It gives a $C_9 = -C_{10}$ effect in $b \to s \ell^+ \ell^-$ at tree level and at the same time a sizable effect in $b \to c \tau \nu$ without violating bounds from $b \to s \nu \nu$ and/or direct searches and does not lead to proton decay. Note that this LQ by itself is not UV complete, however several UV complete models for this LQ have been proposed [15, 16, 21–29, 37].

For the purpose of our phenomenological analysis, let us consider a model where we simply extend the SM by this LQ. Its interaction with the SM particles is given by the Lagrangian

$$\mathcal{L}_V = \kappa^f_i Q_L^f i \gamma_5 L_i V_{\mu}^{\dagger} + h.c.,$$

where $Q(L)$ is the quark (lepton) $SU(2)_L$ doublet, κ^f_i represents the couplings of the LQ to the left handed quarks (leptons) and f and i are flavor indices. Note that in principle couplings to right-handed SM particles are also allowed, they are however not relevant for this discussion. After electro-weak symmetry breaking, we work in the down basis, meaning that no CKM matrix elements appear in FCNC processes.

We start by taking κ^f_2 and κ_3^f as the only non-zero couplings, as they are necessary to explain $b \to c \tau \nu$ data. Here, strong effects in $b \to s \tau^+ \tau^-$ transitions [39] are generated which at the 1-loop level affect $b \to s \ell^+ \ell^-$ via the Wilson coefficients $C^\ell_{9, sb}$ and C^b_{7b}, as is depicted to the left in Fig. 1. Due to the correlation with $b \to c \tau \nu$, these Wilson coefficients can be expressed as functions of $R(D^{(*)})/R(D^{(*)})_{SM}$. The Wilson coefficients’ dependency on these ratios is shown in the right plot of Fig. 1, where the RGE evolution of C^b_{7b} from the NP scale down to the b quark scale is also taken into account (see Ref. [40]). Interestingly, assuming an explanation of $b \to c \tau \nu$ data, the effects
generated in $C_{9, sb}^{\ell}$ and C_{7}^{cb} agree with the 1σ ranges of the model independent fit to $b \rightarrow s\mu^{+}\mu^{-}$ data excluding LFU violating observables [38,41].

Now we also allow κ_{32}^{L} and κ_{22}^{L} to be non-zero, generating a tree level effect in $b \rightarrow s\mu^{+}\mu^{-}$ which is necessary to account for the LFU violating observables as well. In Fig. 2 we show the allowed (colored) regions from $b \rightarrow s\mu^{+}\mu^{-}$ and $b \rightarrow c\tau\nu$ as well as the exclusions from $b \rightarrow s\tau\mu$ and $\tau \rightarrow \phi\mu$. A simultaneous explanation of the anomalies is perfectly possible since the colored regions overlap and do not extend to the parameter space excluded by $b \rightarrow s\tau\mu$ and $\tau \rightarrow \phi\mu$. Interestingly, we predict a lepton flavor universal effect in $C_{9, sb}^{\ell}$ and C_{7}^{cb} in addition to a LFU violating tree-level effect of the form $C_{9, sb}^{\mu\mu} = -C_{10, sb}^{\mu\mu}$ in muonic channels only. This means that the effect of NP compared to the SM is expected to be larger in lepton flavor universal observables like PS' relative to LFU violation observables as $R(K^{(*)})$, which is in perfect agreement with global fit scenarios [8]. In fact, the agreement is even better after the inclusion of the new measurements of BELLE and LHCb.

References

