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We investigate the single-spin asymmetry with a sinϕSh modulation for the transversely polarized
proton and Λ production in semi-inclusive inelastic scattering process, where ϕSh is the azimuthal
angle of the transverse spin of the final hadron. Theoretically, the spin asymmetry can be inter-
preted by the convolution of the twist-3 transverse momentum dependent distributions and twist-2
fragmentation functions. In this work, three different origins in terms of the hH1 term, the f⊥D⊥

1T

term and the g⊥G1T term are taken into account simultaneously for this asymmetry. We calculate
the twist-3 quark transverse momentum dependent distributions h, f⊥ and g⊥ by using the quark
spectator diquark model, and we investigate the role of the fragmentation functions H1, D⊥

1T and
G1T in the sinϕSh asymmetry as well. We also predict the numerical results of the asymmetries for
the proton and the Λ production at JLab with a 12 GeV beam and at COMPASS with a 160 GeV
beam, separately. From the comparison of the different sources for the asymmetry, we find that,
the distribution h and the fragmentation function H1 give the dominant contribution to the sinϕSh

asymmetry for proton production, while the distribution f⊥ might be probed by the convolution
with D⊥

1T in the Λ production at JLab 12 GeV.
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1. Introduction

In this work, we extend the phenomenological study of the polarized hadron production in
SIDIS at the twist-3 level within the transverse momentum dependent (TMD) framework. We focus
on the single spin asymmetry (SSA) with a sinϕSh modulation in the transversely polarized hadron
production in SIDIS off an unpolarized nucleon: ℓ+N −→ ℓ′+ h↑+ X , where ϕSh is the azimuthal
angle of the transverse spin ShT with respect to the lepton plane. Following Ref. [1, 2], there are
several contributions to this asymmetry from the convolutions of the twist-2 TMD fragmentation
functions with twist-3 TMD distribution functions. We calculate the involved distributions and the
fragmentation functions in a spectator diquark model [3, 4]. Using the model results, we investigate
the roles of the hH1, g⊥G1T and f⊥D⊥

1T couplings in the SSA A
sinϕSh
UUT for the transversely polarized

proton and the Λ hyperon production in SIDIS at the JLab 12 GeV and at COMPASS.

2. Twist-3 TMD distribution functions in a spectator model

The three involved twist-3 TMD distributions in this work are the T-odd distribution g⊥, the
T-even distribution f⊥ and the T-odd distribution h, respectively. We have presented the calculation
on the T-odd distribution g⊥ in a spectator model with both the scalar and the axial-vector diquark
in Ref. [5, 6]. Therefore, following the same method, we can calculate the other two twist-3 TMD
distribution functions h and f⊥ from the quark-quark correlator Φ(x, pppTTT ;S) via the traces

1
4

Tr[(Φ(x, pppT ;S)+Φ(x, pppT ;−S)) iσαβ γ5] =− M
P+

εαβ
T h, (2.1)

1
4

Tr[(Φ(x, pppT ;S)+Φ(x, pppT ;−S))γα ] =
pα

T
P+

f⊥ . (2.2)

The corresponding expressions of h and f⊥ from the scalar component are

h(x, ppp2
T )s =− N2

s (1− x)3

16π3M
eseq

4π
(m+ xM)(L2

s − ppp2
T )

L2
s (ppp2

T +L2
s )

3 , (2.3)

f⊥(x, ppp2
T )s =− N2

s (1− x)2

16π3
(ppp2

T −2mM(1− x)− (1− x2)M2 +m2
s )

(ppp2
T +L2

s )
4 , (2.4)

and the ones that from the axial-vector diquark component are

h(x, ppp2
T )a =0 , (2.5)

f⊥(x, ppp2
T )a =

N2
a (1− x)
16π3

(xppp2
T +2mM(1− x)2 +(x−1)m2 +(x3 −2x2 +1)M2 −m2

a)

L2
a(ppp2

T +L2
a)

3 . (2.6)

The detailed calculation of the distributions h and f⊥ has been performed in Ref. [7]. To construct
the distributions for the u and d quarks, we adopt the following relation between the flavors and
isospins of the diquark f u = c2

s f s + c2
a f a, f d = c2

a′ f a′ [3]. cs, ca and ca′ are the free parameters of
the model, a and a′ denote the isoscalar and isovector states of the axial-diquark, respectively.

In Fig. 1, we show the dependence of the distributions f⊥ and h on the flavors, Bjorken x
and the active quark transverse momentum pT = 0.3 GeV. As we can see, the distributions f⊥u

and f⊥d are in similar sizes in the specified kinematic region (x = 0.3 or pT = 0.25 GeV). While
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Figure 1: Model results for x f⊥u(x, p2
T ), xhu(x, p2

T ) (solid line) and x f⊥d(x, p2
T ), xhd(x, p2

T ) (dashed line).

for the T-odd distribution h, its size is smaller compared to those of the T-even distributions f⊥.
Particularly, we can verify that hu vanishes when one integrates out the transverse momentum∫

d2 pT hu(x, ppp2
T ) = 0, which is an expected result from the time-reversal invariance.

3. Twist-2 TMD fragmentation functions in spectator model

In this section, we will perform the model calculation on the relevant twist-2 TMD polarized
fragmentation functions H1, G1T and D⊥

1T . Since D⊥
1T has been calculated for the Λ hyperon by the

same spectator diquark model in Ref. [8], we will focus on the proton fragmentation function Dp/q
1 .

The calculation on the left two TMD fragmentation functions H1 and G1T can be performed from
the fragmentation correlation function ∆(z,kkkT ;SSShT ) by the traces

Sα
T H1(z,kkk2

T ) =
1
4

Tr[(∆(z,kkkT ;SSShT )−∆(z,kkkT ;−SSShT ))iσα −γ5] , (3.1)

ShL G1L(z,kkk2
T )+

kkkT · SSShT

Mh
G1T (z,kkk2

T ) =
1
4

Tr[(∆(z,kkkT ;SSShT )−∆(z,kkkT ;−SSShT ))γ−γ5] . (3.2)

The spin vector of the outgoing hadron Sh has the form Sµ
h = ShL

(Ph·n+)n
µ
−−(Ph·n−)n

µ
+

Mh
+Sµ

hT .
Assuming the SU(6) spin-flavor symmetry for the final state hadron [9, 10], the relations be-

tween quark flavors and diquark types for the proton and the Λ hyperon can be established as

Du→p =
3
2

D(s)+
1
2

D(v), Dd→p = D(v) ,Ds→p = 0 (3.3)

Du→Λ = Dd→Λ =
1
4

D(s)+
3
4

D(v) , Ds→Λ = D(s) . (3.4)

Following the method and settings in Ref. [11], the modeling expression of the twist-2 TMD un-
polarized fragmentation function D1 can be obtained as

D(s)
1 (z,kkk2

T ) = Dv
1(z,kkk

2
T ) =

g2
D

2(2π)3
1
z2 e

−2k2

Λ2
(1− z)[z2k2

T +(M+ zm)2]

z4(k2
T +L2)2 , (3.5)

which has already been calculated in Ref. [8]. According to Eq. (3.3) and Eq. (3.5), the unpolarized
fragmentation function D1 for proton satisfies the relation Du→p

1 = 2Dd→p
1 , which is consistent with

the HKNS parametrization of Dp
1 presented in Ref. [12].

Similarly, we can get the model results of the TMD fragmentation functions H1 and G1T [7]

HR
1 (z,kkk

2
T ) = aR

g2
D

2(2π)3
1
z2 e

−2k2

Λ2
(1− z)[(zm+Mh)

2]

z4(kkk2
T +L2

f )
2

, (3.6)

GR
1T (z,kkk

2
T ) = aR

g2
D

(2π)3
1
z2 e

−2k2

Λ2
Mh(zm+Mh)(1− z)

z3(kkk2
T +L2

f )
2

, (3.7)
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Figure 2: Model results of zHu
1 and zHd

1 (solid line), zGu
1T (dotted line) and zGd

1T , zD⊥u
1T and zD⊥d

1T (dashed
line) for the proton.

with L2
f =

1−z
z2 M2

h +m2 +
m2

D−m2

z . From Eqs. (3.3), (3.4) and (3.6), (3.7), one can find that for the
fragmentation functions H1 and G1T , both the u and d quark fragmenting to the Λ hyperon will
vanish in our model, while the u and d quark fragmenting to the proton will be nonzero. That is,
for the Λ production, we only need to consider the contribution from D⊥

1T .
In Fig. 2, we present our model results of the twist-2 TMD fragmentation functions H1, G1T

and D⊥
1T for the u and d quark fragmenting to the proton. As one can see, H1 and G1T decrease

but D⊥
1T increases with increasing z; the magnitude of H1 is lager than that of G1T , while D⊥

1T is
nonzero only in the large z region. From the view of the flavors, Hu

1 and Gu
1T are positive in the

model, while Hd
1 and Gd

1T are negative. As for D⊥
1T , only D⊥d

1T becomes sizable at large z.

4. Prediction on the SSA of transversely polarized proton and Λ hyperon in SIDIS

The differential cross section of the process for the transverse polarized hadron in SIDIS off
the unpolarized proton is generally expressed as [13]

dσ
dxdydzdϕdψdP2

h⊥
=

α2

xyQ2
y2

2(1− ε)
(1+

γ2

2x
)

{
FUUU + |ShT |sinϕSh

√
2ε(1+ ε)FsinϕSh

UUT + · · ·
}
.

(4.1)

Here FUUU and F
sinϕSh

UUT are structure functions that contributes to the sinϕSh azimuthal asymmetry,
which Ph⊥-dependent expression can be defined as

A
sinϕSh
UUT (Ph⊥) =

∫
dx

∫
dy

∫
dz 1

xyQ2
y2

2(1−ε)

(
1+ γ2

2x

)√
2ε(1+ ε) F

sinϕSh
UUT∫

dx
∫

dy
∫

dz 1
xyQ2

y2

2(1−ε)

(
1+ γ2

2x

)
FUUU

. (4.2)

The x-dependent and the z-dependent asymmetries can be given in a similar way.
To perform the estimate, we adopt a more phenomenological approach by using the factoriza-

tion at the tree-level [14] to give the expression for the structure function F
sinϕSh

UUT :

F
sinϕSh

UUT ≈ 2M
Q

I [−xhH1 +
kkkTTT · pppTTT

2MMh
(−x f⊥ D⊥

1T − xg⊥ G1T )]. (4.3)

where we introduce the convolution integral

I
[
ω f D

]
= x∑

q
e2

q

∫
d2 pppT

∫
d2kkkT δ 2(pppT − PPPh⊥

z
− kkkT )w(pppT ,kkkT ) f q(x, ppp2

T )D
q(z,kkk2

T ) , (4.4)

3
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Figure 3: Predictions on the asymmetry A
sinϕSh
UUT for proton and Λ in SIDIS at JLab 12 GeV.

and the Wandzur-Wilczek approximation [15] to ignore the contribution from the twist-3 TMD
fragmentation functions D̃T , H̃⊥

T and H̃T to F
sinϕSh

UUT .
Considering the following constraints on the transverse momenta of the initial quarks [16]ppp2

T ≤ (2− x)(1− x)Q2, for 0 < x < 1;

ppp2
T ≤ x(1−x)

(1−2x)2 Q2, for x < 0.5;
(4.5)

and the kinematical cuts adopted at JLab 12 GeV

0.1 < x < 0.6, 0.3 < z < 0.7, Q2 > 1GeV2, W 2 > 4GeV2,Ph⊥ > 0.05GeV, (4.6)

we estimate the SSA A
sinϕSh
UUT of proton and Λ hyperon production in SIDIS. The numerical results

are shown in Fig. 3. For proton production, the magnitude of the asymmetry A
sinϕSh
UUT is sizable and

negative, and the size is around 4% at the kinematics of JLab. While for the Λ hyperon production,
the size is smaller than 1%, since it gets contribution only from the f⊥D⊥

1T term in our model.
We also estimate this same asymmetry for proton and Λ at COMPASS with the kinematics [17]

0.004 < x < 0.7, 0.1 < y < 0.9, z > 0.2, Q2 > 1GeV2,

Ph⊥ > 0.1GeV, W > 5GeV, Eh > 1.5GeV. (4.7)

The responding asymmetries A
sinϕSh
UUT for proton and Λ hyperon are shown in Fig. 4. Interestingly,

the size of the hH1 contribution at COMPASS is clearly smaller than that of JLab. This is because
the twist-3 effect is suppressed by a factor of 1/Q, while Q at COMPASS is larger than that at JLab.

5. conclusion

In this work, we predicted the contributions from three twist-3 terms to the SSA A
sinϕSh
UUT in

the transversely polarized proton as well as Λ production in SIDIS at the kinematics of JLab 12

4
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Figure 4: Predictions on the asymmetry A
sinϕSh
UUT for proton and Λ in SIDIS at COMPASS.

GeV and COMPASS. The estimated contributions to the asymmetry for the proton is sizable and
negative. Specifically, the magnitude is around 4% at JLab 12 GeV, but about 1% at COMPASS.
The sinϕSh asymmetry from the f⊥D⊥

1T term for the Λ hyperon production is much smaller.
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