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tromagnetic radii of the nucleon are also evaluated.
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1. Introduction

Basis light front quantization (BLFQ) is a nonperturbative approach which has been developed
for solving many-body bound-state problems in quantum field theories [1, 2, 3, 4]. It is a Hamilto-
nian formalism incorporating the advantages of the light front dynamics [5, 6]. This formalism has
been successfully applied to QED systems including the electron anomalous magnetic moment [4]
and the strong coupling bound-state positronium problem [2]. It has also been applied to heavy
quarkonia [3, 7] and Bc mesons [8] both as QCD bound states. Recently, the BLFQ approach us-
ing a Hamiltonian that includes the color singlet Nambu–Jona-Lasinio interaction to account for
the chiral dynamics has been applied to the light mesons [9, 10, 11]. In this work, we apply the
BLFQ formalism to the nucleon and study the electromagnetic form factors using the light front
wave functions (LFWFs) obtained by diagonalizing the effective light front Hamiltonian in the con-
stituent valence quark representation. In the effective Hamiltonian, we adopt interactions including
the light front holographic QCD in the transverse direction [12], a longitudinal confinement [3],
and a one-gluon exchange interaction with a fixed coupling in the framework of BLFQ.

In the light front formalism for a spin 1/2 composite system the Dirac and Pauli form factors
F1(q2) and F2(q2) are identified with the helicity-conserving and helicity-flip matrix elements of
the vector current. These form factors can be expressed in terms of overlap integrals as [13]
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where ψΛ
n (xi,k⊥i,λi) is the boost invariant light-front wave functions. λi and Λ are the light-

cone helicities of the parton and the composite system, respectively. For the struck parton x′1 =

x1; k′⊥1 = k⊥1 + (1− x1)q⊥ and x′i = xi; k′⊥i = k⊥i− xiq⊥ for the spectators (i = 2, ....n). We
consider the frame where the momentum transfer q = (0,0,q⊥), thus Q2 =−q2 = q2

⊥.
Under charge and isospin symmetry, it is straightforward to write down the flavor decomposi-

tion of the nucleon form factors [14, 15]

F p(n)
i = euFu(d)

i + edFd(u)
i (i = 1,2) (1.3)

with the normalizations Fu
1 (0) = 2,Fu

2 (0) = κu and Fd
1 (0) = 1,Fd

2 (0) = κd where the anomalous
magnetic moments for the up and the down quarks are κu = 2κp+κn = 1.673 and κd = κp+2κn =

−2.033. The nucleon Sachs form factors are written in terms of Dirac and Pauli form factors as
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and the electromagnetic radii are defined by
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2. Effective light front Hamiltonian

The structures of the bound states are encoded in the LFWFs which are the eigenfunctions of
the light front eigenvalue problem: Heff|Ψ〉=M2|Ψ〉, where Heff is the effective Hamiltonian of the
system with the mass squared M2 eigenvalue. In the valence Fock sector, the effective Hamiltonian
for the nucleons that we adopt is given by

Heff = ∑
a

~k2
a⊥+m2

a

xa
+

1
2 ∑

a,b

[
κ

4
T xaxb(~ra⊥−~rb⊥)

2− κ4
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where ∑a xa = 1, and ∑a ka⊥= 0. ma/b is the mass of the specified quark, and κL (κT ) is the strength

of the longitudinal (transverse) confinement. ~ζ⊥ ≡
√

xaxb~r⊥ is the holographic variable [12], where
~r⊥ =~ra⊥ −~rb⊥ is the transverse separation between two quarks, ∂x f (x,~ζ⊥) = ∂ f (x,~ζ⊥)/∂x|~ζ .

Q2
ab =−q2 =−(1/2)(k′a−ka)

2−(1/2)(k′b−kb)
2 is the average momentum transfer squared, CF =

−2/3 is the color factor. gµν is the metric tensor and αs is the running coupling which we replace
by a constant for simplicity. Note that we use different quark masses in the kinetic energy from
those in the other terms of the effective light front Hamiltonian to attempt to account for the effects
of higher Fock components and the other QCD interactions.

The light front mass eigenvalue problem is solved in the BLFQ approach using a single-particle
representation [1, 2, 4]. In this approach, we choose the two dimensional harmonic oscillator (‘2D
HO’) basis in the transverse direction and the discretized plane-wave basis in the longitudinal di-
rection. Each single-particle basis state is identified using four quantum numbers, ᾱ = {k,n,m,λ}.
The longitudinal momentum of the particle is characterized by the first quantum number k. In the
longitudinal direction x−, we constrain the system to a box of length 2L, and impose (anti-) periodic
boundary conditions on (fermions) bosons 1. As a result, the longitudinal momentum p+ = 2πk/L
is discretized, where the dimensionless quantity k = 1,2,3, ... for bosons and k = 1/2,3/2,5/2, ...
for fermions. The zero mode for bosons is neglected. In the many-body basis, all basis states
are selected to have the same total longitudinal momentum P+ = ∑i p+i , where the sum is over
the particles in a particular basis state. One then parameterizes P+ using a dimensionless variable
Kmax = ∑i ki such that P+ = 2πKmax/L. For a given particle i, the longitudinal momentum fraction
x is defined as xi = p+i /P+ = ki/Kmax. The next two quantum numbers, n and m, denote radial exci-
tation and angular momentum projection, respectively, of the particle within the 2D HO basis in the
transverse direction. The choice of the 2D HO basis for BLFQ is made because the HO potential
is our confining potential, and therefore its wave functions should form a reasonable basis for the
expansion of the long-distance behavior of the solutions. In terms of the dimensionless transverse
momentum variable~v⊥(=~k⊥/b) , the ortho-normalized 2D HO basis function reads

φnm(~v⊥) =

√
n!

(n+ |m|)!π
eimθ v|m|e−v2/2L|m|n (v2), (2.2)

1Although we do not include dynamical gluons in the present work, we specify their corresponding modes as seen
for dynamical photon in Ref. [4], for example.
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where v = |~v⊥|, θ = arg~v⊥, Lα
n (x) is the associated Laguerre polynomial, and b is the HO basis

scale with dimension of mass. For the spin degrees of freedom, the quantum number λ is used to
label the helicity of the particle.

In order to numerically diagonalize Heff, the infinite dimensional basis must be truncated. In
BLFQ, two levels of truncation scheme are implemented. First, the number of Fock sectors in the
basis is restricted. For example, the nucleon state can be expressed schematically as

|N 〉phys = a|qqq〉+b|qqqg〉+ c|qqqqq̄〉+ · · · . (2.3)

In this work, we limit ourselves to only the leading Fock sector |qqq〉. Thus, the nucleon basis
state can be written as

|NSz
phys 〉= |kq1 ,nq1 ,mq1 ,λq1 〉⊗ |kq2 ,nq2 ,mq2 ,λq2 〉⊗ |kq3 ,nq3 ,mq3 ,λq3 〉. (2.4)

Second, within each Fock-sector, further truncation is still needed to reduce the basis to a
finite dimension. We introduce a truncation parameter Kmax on the longitudinal direction such
that, ∑i ki = Kmax. In the transverse direction, we require the total transverse quantum number
Nα = ∑l(2nl + |ml|+ 1) for multi-particle basis state |α 〉 satisfying Nα ≤ Nmax, where Nmax is
a chosen truncation parameter. The continuum limit corresponds to both Kmax, Nmax → ∞. In
addition, our many body states have well defined values of the total angular momentum projection
MJ = ∑i (mi +λi) , where λ is the fourth quantum number which corresponds the helicity of the
particle.

We obtain the spectrum and the light front wave functions numerically by diagonalizing the
effective Hamiltonian given in Eq.(2.1) with the basis representation given by Eq. (2.4). Using
the resulting light front wave functions ψn, we evaluate the electromagnetic form factors of the
nucleon. The parameters are tuned by hand to provide a reasonable fit to the electromagnetic
properties of the nucleons.

3. Numerical results

In Fig. 1(a) and 1(b), we show the electric and magnetic Sach’s form factors for the proton
whereas the same form factors for the neutron are shown in Fig. 1(c) and 1(d). We set the confining
strength, κL = κT = 0.4 GeV in both the longitudinal and transverse confinements. The bands
represent the range of our results due to increasing the basis from Nmax = 6 to Nmax = 8 both with
Kmax = 10. The couplings corresponding to Nmax = 6 and Nmax = 8 are αs = 1.7 and αs = 1.4,
respectively. In order to attempt to simulate the effect of higher Fock component and the other
QCD interactions, we use masses for up and down quarks in the kinetic energy i.e. mu/KE = 0.6
GeV and md/KE = 0.57 GeV and a different quark mass in the one gluon exchange interaction
and in longitudinal confinement and in longitudinal confining term mq/OGE = 0.3 GeV. Overall we
obtain a reasonable agreement between theory and experiment for the nucleon electric form factors.
At low Q2, the magnetic form factor for the proton is also in reasonable agreement with the data.
However, the theoretical magnetic form factor for the neutron exhibits more significant deviation
from the data which indicates there is room to further improve the BLFQ results. It should also be
noted that these results are obtained from a finite basis and thus, there may be finite basis effect
that should be further examined in future research.
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Figure 1: (Color online) BLFQ results for the nucleon Sach’s form factors; (a) Gp
E(Q

2), (b) Gp
M(Q2) for the

proton and (c) Gn
E(Q

2), (d) Gn
M(Q2) for the neutron. We use the confining strength, κL = κT = 0.4 GeV. The

quark masses in the kinetic energy are mu/KE = 0.6 GeV and md/KE = 0.57 GeV, whereas the quark mass in
one gluon exchange interaction mq/OGE = 0.3 GeV. The bands correspond the range for [Nmax = 6, αs = 1.7]
and [Nmax = 8, αs = 1.4] both with Kmax = 10. We choose the value of HO parameter b to be the same as
κL(κT ) i.e. b = 0.4 GeV. mg(= 0.05 GeV) is a small gluon mass regulator used for numerical convenience.
The experimental data can be found in Ref. [14, 15].

From the Sachs form factors we also compute the electromagnetic radii of the nucleons. We
quote the radii in Table 1, the experimental values are taken from the Ref. [16]. Here again, we
find reasonable agreement with experiment for the charge radii. However the BLFQ results for
magnetic radii are overestimated compared to the experimental data.

4. Conclusions

The electromagnetic form factors for the nucleon have been presented using the BLFQ ap-
proach. The form factors have been evaluated from the overlaps of the light front wave functions
which were obtained by diagonalizing the effective Hamiltonian. In our model, we consider the
holographic QCD confinement potential, a longitudinal confinement, and a one-gluon exchange
interaction with fixed coupling in the effective light front Hamiltonian. We observed a reasonable
agreement of our results for the nucleon electric form factors with the experimental data. On the
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Quantity BLFQ Measured data [16]

rp
E 0.887 fm 0.877±0.005 fm

rp
M 1.008 fm 0.777±0.016 fm
〈r2

E〉n −0.1398 fm2 −0.1161±0.0022 fm2

rn
M 1.204 fm 0.862+0.009

−0.008 fm

Table 1: Electromagnetic radii of the nucleons. The BLFQ results are with the basis Nmax = 8 and Kmax = 10.

other hand, the magnetic form factor of the neutron shows larger differences from the data. We
also presented the electromagnetic radii for the nucleon.
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