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Lensing function relation in Hadrons
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Introduction

Transverse distortions in the distribution of quarks in impact parameter space are described by
impact-parameter dependent parton distributions (IPDs), obtained by Fourier transforms of gen-
eralized parton distributions (GPDs) that contribute to observable asymmetries in exclusive pro-
cesses involving hadrons. Analogous distortion in transverse momentum space are described by
transverse-momentum dependent parton distributions (TMDs) that give rise to observable asymme-
tries in semi-inclusive deep inelastic (SIDIS) processes. At leading twist, the correlator of IPDs has
formally the same structure as the correlator for TMDs, with the impact parameter bbb⊥ taking the
role of the transverse momentum kkk⊥. Beyond this formal connection, in general it is not possible to
establish model-independent relations between GPDs and TMDs. Only model calculations show
nontrivial relations [1–3]. The most prominent cases are the relations which describe T-odd effects
in single spin asymmetries (SSAs) via factorization of the effects of final state interactions (FSIs),
incorporated in a so-called “chromodynamics lensing function”, and a spatial distortion of GPDs
in impact parameter space [4–6]. In this contribution, we summarize the very stringent conditions
for the validity of the lensing relation, that have been discussed more extensively in Ref. [7].

1. Relations between GPDs and T-odd TMDs

The quark TMD correlator is defined as

Φ
[Γ ] (x,kkk⊥,S) =

1
2

∫ dz−dzzz⊥
(2π)3 eik·z 〈p,S|ψ

(
− z

2

)
Γ W

(
− z

2
,

z
2

)
ψ

( z
2

)
|p,S〉

∣∣∣
z+=0

, (1.1)

where p = (p+, p−, ppp⊥ = 000⊥) and S are, respectively, the hadron-target momentum1 and spin, ψ is
the quark field operator and Γ is a generic matrix in the Dirac space. The TMD correlator depends
on the light-cone momentum fraction x = k+

p+ , and on the quark transverse momentum kkk⊥. The
Wilson line W connecting the two quark fields ensures color gauge invariance and is defined as

W (a,b) = Pexp
{
−igs

∫
γ

dζ ·A(ζ )
}
,

where gs =
√

4παs and γ is a path from a to b that is determined by the physical process under
consideration (we consider the Wilson line of a SIDIS process). The Wilson line in Eq. (1.1)
breaks the naive time-reversal invariance of the correlator and, as a consequence, T-odd TMDs
need to be included. At leading-twist and for spin 1/2 targets, one has two T-odd TMDs: the
Sivers function f⊥1T (x,kkk

2
⊥) and the Boer-Mulders TMD h⊥1 (x,kkk

2
⊥). The Sivers function describes

the momentum distribution of unpolarized quark in a transversely polarized target, and is obtained
from the correlator (1.1) with Γ = γ+. The Boer-Mulders function gives the momentum distribution
of transversely polarized quarks in an unpolarized target, and is defined from the correlator (1.1)
with Γ = iσ j+γ5. For spin-0 targets, only the contribution of the Boer-Mulders functions can exist.

The GPDs in the momentum space are defined through the following light-cone correlation
function

F [Γ ](x,ξ , t,S) =
1
2

∫ dz−

2π
eik·z 〈p′,S|ψ

(
− z

2

)
Γ W

(
− z

2
,

z
2

)
ψ

( z
2

)
|p,S〉

∣∣∣
z+=0, zzz⊥=000⊥

(1.2)

1We use light-front coordinates, with v± = 1/
√

2(v0± v3) and vvv⊥ = (v1,v2) for a generic four-vector v.
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and depend, besides x, on the variables ξ =− ∆+

2P+ and t =∆ 2, where P= (p+ p′)/2 and ∆ = p′− p.
The IPD correlator can be obtained by Fourier transform of the the GPD correlator (1.2) at

ξ = 0 from the momentum coordinates ∆∆∆⊥ to the impact parameter coordinates bbb⊥, and reads

F [Γ ](x,bbb⊥,S) =
1
2

∫ dz−

2π
eixp+z−〈p+,RRR⊥ = 000⊥,S|ψ(z1)Γ W (z1,z2)ψ (z2) |p+,RRR⊥ = 000⊥,S〉,

(1.3)

where the quark fields are evaluated at z1,2 = (0+,∓ z−
2 ,bbb⊥) and the hadron is in a state with longi-

tudinal momentum p+ at a transverse position RRR⊥ = 000⊥. At leading-twist and for spin 1/2 targets,
the correlator (1.3) with Γ = γ+ and transversely polarized targets can be parametrized in terms of
the derivative of the IPD E , while with Γ = iσ j+γ5 and unpolarized target we access the derivative
of the combination ET +2H̃T of chiral-odd IPDs. In the case of spin-zero targets, the contributions
from the IPDs E and ET are absent.

The analogy between the tensor structure of the parametrizations of the quark TMD and IPD
correlators suggested a relation between T-odd TMDs and the IPDs for unpolarized (transversely)
polarized quarks in a transversely polarized (unpolarized) target. In order to specify the precise
form of this link, we consider the following average quark transverse momenta

〈ki
⊥(x)〉UT =

∫
d2kkk⊥ki

⊥Φ
[γ+](x,kkk⊥,SSS⊥), 〈ki

⊥(x)〉
j
TU =

∫
dkkk⊥ki

⊥Φ
[iσ j+γ5](x,kkk⊥), (1.4)

where the first and second subscripts indicate the quark and hadron polarisation, respectively. Con-
sidering the case of unpolarized quarks, we can rewrite the average transverse momentum as

〈ki
⊥(x)〉UT =

1
2

∫ dz−

2π
eixp+z− 〈p,SSS⊥|ψ

(
− z

2

)
W
(
− z

2
,

z
2

)
I i
( z

2

)
γ
+

ψ

( z
2

)
|p,SSS⊥〉

∣∣
z+=zzz⊥=0

=
1
2

∫
d2bbb⊥

∫ dz−

2π
eixp+z− 〈p+,RRR⊥ = 000⊥,SSS⊥|ψ̄(z1)W (z1;z2)I

i(z2)γ
+

ψ(z2)|p+,RRR⊥ = 000⊥,SSS⊥〉 .

(1.5)

The function I i(z) encodes the contribution of the FSIs, and is defined as

I i (z) =
gs

2

∫
dy−W

(
(z−,z+,zzz⊥),(y−,z+,zzz⊥)

)
G+i (y−,z+,zzz⊥)W (

(y−,z+,zzz⊥),(z−,z+,zzz⊥)
)
,

(1.6)

with G+i being the gluon-field strength tensor. In light-cone gauge A+ = 0 with advanced boundary
condition AAA⊥(−∞−) = 0, one has I i (z) = gs

2 Ai
⊥ (∞

−,z+,zzz⊥) , and Eq. (1.5) becomes

〈ki
⊥(x)〉UT =

gs

2

∫ dz−

2π
eixp+z− 〈p,SSS⊥|ψ

(
− z

2

)
Ai
⊥
(
∞
−)

γ
+

ψ

( z
2

)
|p,SSS⊥〉

∣∣
z+=zzz⊥=0. (1.7)

One notices from Eq, (1.7) that the FSIs in the light-cone gauge with advanced boundary conditions
(and, similarly, with the retarded or principal value prescriptions) reduce to the exchange of a
transverse gluon at light-cone infinity between the active quark and the spectator partons.
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Using the completeness relation, we can rewrite the first line of Eq. (1.5) as

〈ki
⊥(x)〉UT =

1
2

∫
{dk1}{dk2}{dl}

∫ dz−

2π
eixp+z−e−i z−

2 (k+1 +k+2 +l+)
∑
n,m

∑
ββ ′

∫ n

∏
i=1

dq+i dqqq⊥,i
(2π)32q+i

×
m

∏
j=1

dw+
j dwww⊥, j

(2π)32w+
i
〈p+, ppp⊥ = 000⊥,SSS⊥|φ(k1)γ

+|{q+i ,qqq⊥,i}n,β
′〉〈{q+i ,qqq⊥,i}n,β

′|Ii(l)|{w+
i ,www⊥,i}m,β 〉

×〈{w+
i ,www⊥,i}m,β |ψ(k2)|p+, ppp⊥ = 000⊥,SSS⊥〉 , (1.8)

where {. . .} indicates the Lorentz invariant integration measure and φ
( z

2

)
= ψ̄

(
− z

2

)
W
(
− z

2 ; z
2

)
.

In Eq. (1.8), the index β and β ′ label the parton, color and the helicity content of the intermediate
states. The matrix elements of the lensing operator Ii(l) in Eq. (1.9) represent the interaction
between the active parton and the spectator system mediated by the Wilson gluons and correspond
to the FSIs that occur in a SIDIS process. One can factorize the lensing function and the IPD in
Eq. (1.8) by requiring that the matrix elements of the operator Ii(l) satisfy the following relation

〈{q+i ,qqq⊥,i}n,β
′|Ii(l)|{w+

i ,www⊥,i}m,β 〉

= 2πLi
(

lll⊥
1− x

)
δn,mδββ ′δ (l

+)
n

∏
i=1

(2π)32q+i δ (q+i −w+
i )δ

(
qqq⊥,i−www⊥,i− xi

lll⊥
1− x

)
, (1.9)

where xi is the light-cone momentum fraction of each constituent w.r.t. the hadron target light-
cone momentum, i.e. xi = w+

i /p+, and should satisfy the relation ∑i xi = 1− x. The relation (1.9)
imposes strict conditions that are equivalent to requiring that:

1. the FSIs should connect Fock states with the same number of constituents and the same
parton, helicity and color content;

2. the FSIs should transfer the total transverse momentum lll⊥/(1− x) to the whole spectator
system;

3. the FSIs can not transfer momentum in the light-cone direction to the spectator system;

4. the FSIs should transfer a fraction xi = w+
i /p+ of the total transverse momentum to each

constituent of the spectator system.

The last condition is the most stringent. It is crucial to obtain the correct transverse light-front
boost that gives the non-diagonal matrix element defining the GPDs and then the transverse distor-
tion in impact parameter space described by IPDs. In the light-cone gauge with advanced boundary
conditions, one can easily deduce that the condition 4 can be realized with a coupling between the
gauge boson and the spectator system only if the latter is composed by a single constituent, i.e. the
hadron target is a two-body bound system. In this case, the light-cone momentum fraction of the
spectator is equal to 1−x and the constraint on the transverse momentum transferred by the Wilson
gluon to the spectator system follows trivially from the conservation of the total momentum of the
hadron target. Otherwise, the condition 4 imposes to share the transverse momentum carried by the
Wilson gluon with each spectator parton in a proportion equal to the longitudinal momentum frac-
tion xi. This can not be realised in systems composed by more than two constituents by assuming
an interaction vertex between the gauge boson and a single constituent.
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We conclude that if and only if the above conditions are fulfilled we can write

〈ki
⊥(x)〉UT =−

∫
dk⊥ki

⊥
ε

jk
⊥ k j
⊥Sk
⊥

M
f⊥1T (x,k

2
⊥)

≈
∫

db⊥L i
(

b⊥
(1− x)

)
F [γ+](x,b⊥,S⊥) =

∫
db⊥L i

(
b⊥

(1− x)

)
ε

jk
⊥ b j
⊥Sk
⊥

M

(
E (x,b2

⊥)
)′
. (1.10)

Analogously, we can analyze the average quark transverse momentum of a transversely polarized
quark in an unpolarized target and establish a lensing relation between the Boer-Mulders function

and the combination of IPDs−
(
ET

(
x,bbb2
⊥

)
+2H̃T

(
x,bbb2
⊥

))′
, with ET (x,b2

⊥)= 0 and 2H̃T → H̃T

for spin-zero targets.
Examples of models that satisfy the relations 1-4 are the scalar-diquark spectator model [1, 6],

or the axial-diquark models that admit only transverse polarization for the axial-vector diquark
for the nucleon [8], and relativistic models for the pion at the lowest order in the Fock-space ex-
pansion [9, 10]. Viceversa, they are violated within three-quark model calculations for the nu-
cleon [11–15].

Using the representation of the TMDs and GPDs in terms of light-front wave functions (LFWFs),
we can explicitly show how the the lensing relation is obtained in the case of the pion, and how it
is violated in the case of the three-quark model calculations for the proton.

In the case of the pion, described as a quark-antiquark bound system, the GPD and the Boer-
Mulders TMD can be written as [10]

∆ k
⊥

2Mπ

H̃T,π(x,0,−∆∆∆
2
⊥) =

T 2
π

2(2π)3

∫
dkkk⊥Gk (x,kkk⊥| |x,kkk⊥+(1− x)∆∆∆⊥) , (1.11)

kk
⊥h⊥1,π

(
x,kkk2
⊥

)
=

2αs

(2π)4
4
3

T 2
π Mπ

∫ dqqq⊥
q2
⊥

Gk (x,kkk⊥| |x,kkk⊥−qqq⊥) , (1.12)

where qqq⊥ is the transverse momentum of the Wilson gluon and the function G is defined from the
light-front wave amplitude (LFWA) overlap Fk as [7]

Gk (x1,kkk⊥,1
∣∣∣∣x′1,kkk′⊥,1)= Fk (x1,kkk⊥,1;1− x,− kkk⊥,1

∣∣∣∣x′1,kkk′⊥,1;x′1,−kkk′⊥,1
)
. (1.13)

In Eq. (1.13), the arguments of the functions on the right-hand (left-hand) side of || refer to the
momentum dependence of the complex conjugate LFWF of the pion in the final (initial) state.
With the formal identification of

−qqq⊥ = (1− x)∆∆∆⊥, (1.14)

one obtains:

〈ki
⊥〉

j
TU =

∫
dbbb⊥

ε
k j
⊥ bk
⊥

Mπ

L i
⊥ (x,bbb⊥)

(
H̃T,π(x,bbb2

⊥)
)′
, (1.15)

with the lensing function [6]

L i (bbb⊥/(1− x)) =−i
4
3

αs4π

∫ dqqq⊥
q2
⊥

qqqi
⊥e−i bbb⊥·qqq⊥

(1−x) =−8
3

αs4π
2 bi
⊥

bbb2
⊥
(1− x). (1.16)

Note that the relation in Eq. (1.14) is exactly the condition 4.
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For the proton, described as three-quark bound system, we introduce the appropriate LFWA
overlap GT [7, 11] and obtain the following expressions for the GPD and for the Sivers function:

iε i j
⊥∆

j
⊥SSSi
⊥

M
E(x,−∆∆∆

2
⊥) =

∫ dkkk⊥
2(2π)3

∫ x

0
dy
∫ dttt⊥

2(2π)3 GT (x,kkk⊥;y, ttt⊥| |x,kkk⊥+(1− x)∆∆∆⊥;y, ttt⊥− y∆∆∆⊥) ,

(1.17)

ε
i j
⊥k j
⊥SSSi
⊥

M
f⊥1T

(
x,kkk2
⊥

)
=− αs

3(2π)7

∫ dqqq⊥
q2
⊥

∫ x

0
dy
∫

dttt⊥GT (x,kkk⊥;y, ttt⊥| |x,kkk⊥−qqq⊥;y, ttt⊥+qqq⊥) .

(1.18)

From this expression, one clearly sees that the formal identification in Eq. (1.14) does not apply,
since (1− x) and y are independent variables. This break the condition 4 and, hence, the validity
of the lensing relation.
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