

On the $\sin \phi_R$ single longitudinal spin asymmetry in dihadron production in SIDIS

Wei Yang**

School of Physics, Southeast University, Nanjing 211189, China E-mail: weiyang@seu.edu.cn

Zhun Lu

School of Physics, Southeast University, Nanjing 211189, China E-mail: zhunlu@seu.edu.cn

We study the single longitudinal-spin asymmetry of dihadron production in semi-inclusive deep inelastic scattering process in which the transverse momentum of the final-state hadron pairs is integrated out. In Particular, we investigate origins of the $\sin \phi_R$ azimuthal asymmetry for which we take into account the coupling of the twist-3 distributions h_L and the dihadron framgentation function (DiFF) $H_{1,ot}^{\triangleleft}$ as well as the coupling of the helicity distribution g_1 and the twist-3 DiFF $\tilde{G}^{\triangleleft}$. To this end The unknown twist-3 dihadron fragmentation function in unpolarized process. We estimate the $\sin \phi_R$ asymmetry of dihadron production in SIDIS at the kinematics of COMPASS and compare it with the preliminary COMPASS data. Although the asymmetry is dominated by the $h_L H_1^{\triangleleft}$ term, we find that the contribution from the $g_1 \tilde{G}^{\triangleleft}$ term should also be taken into account in certain kinematical region.

XXVII International Workshop on Deep-Inelastic Scattering and Related Subjects - DIS2019 8-12 April, 2019 Torino, Italy

*Speaker.

© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).

[†]This work is partially supported by the NSFC (China) grant 11575043, by the Fundamental Research Funds for the Central Universities of China.

Wei Yang

1. Introduction

The azimuthal asymmetries in semi-inclusive deep inelastic scattering (SIDIS) process have been recognized as useful tools for these quests. The full description of SIDIS includes a set of parton distribution functions (PDFs) and fragmentation functions (FFs). [1, 2]. The unpolarized DiFFs were introduced in Ref. [3], and their evolution equations have been investigated in Refs. [4, 5, 6]. Particularly, the chiral-odd DiFF H_1^{\triangleleft} [7, 8, 9] plays an important role in accessing transversity distribution, as it couples with h_1 at the leading-twist level in the collinear factorization. In this work, we study the sin ϕ_R asymmetry by adopting the spectator model results for the distribution functions and fragmentation functions. We not only take into account the coupling $h_L H_1^{\triangleleft}$, but also investigate the role of the T-odd DiFF $\tilde{G}^{\triangleleft}$, which encodes the quark-gluon-quark correlation and has not been considered in previous studies.

2. Formalism of the $\sin \phi_R$ asymmetry of dihadron production in SIDIS

As displayed in Fig.1, the process under study is the dihadron production in SIDIS off a longitudinally polarized proton target:

$$\mu(\ell) + p^{\rightarrow}(P) \longrightarrow \mu(\ell') + h^+(P_1) + h^-(P_2) + X, \qquad (2.1)$$

where the four-momenta of the incoming and the outgoing leptons are denoted by ℓ and ℓ' , *P* is the momentum of the target with mass *M*. In this process, the active quark with momentum *p* is struck by the virtual photon with momentum $q = \ell - \ell'$. The final-state quark with momentum k = p + q then fragments into two final-state hadrons, h^+ and h^- , plus unobserved state *X*. The momenta of the pair are denoted by P_1 , P_2 .

Figure 1: Angle definitions involved in the measurement of the single longitudinal-spin asymmetry in deepinelastic production of two hadrons in the current region.

The twist-3 DiFF $\widetilde{G}^{\triangleleft}$ arises from the multiparton correlation during the quark fragmentation, described by the quark-gluon-quark correlator [13, 15]:

$$\widetilde{\Delta}_{A}^{\alpha}(z,k_{T},R) = \frac{1}{2z} \sum_{X} \int \frac{d\xi^{+} d^{2}\xi_{T}}{(2\pi)^{3}} e^{ik\cdot\xi} \langle 0| \int_{\pm\infty^{+}}^{\xi^{+}} d\eta^{+} \mathscr{U}_{(\infty^{+},\xi^{+})}^{\xi_{T}} \times gF_{\perp}^{-\alpha} \mathscr{U}_{(\eta^{+},\xi^{+})}^{\xi_{T}} \psi(\xi) |P_{h},R;X\rangle \langle P_{h},R;X|\bar{\psi}(0) \mathscr{U}_{(0^{+},\infty^{+})}^{0_{T}} \mathscr{U}_{(0_{T},\xi_{T})}^{\infty^{+}} |0\rangle |_{\eta^{+}=\xi^{+}=0,\eta_{T}=\xi_{T}}.$$
(2.2)

Here, $F_{\perp}^{-\alpha}$ is the field strength tensor of the gluon. After integrating out \vec{k}_T , one obtains

$$\widetilde{\Delta}^{\alpha}_{A}(z,\cos\theta, M_{h}^{2}, \phi_{R}) = \frac{z^{2}|\vec{R}|}{8M_{h}} \int d^{2}\vec{k}_{T}\widetilde{\Delta}^{\alpha}_{A}(z, k_{T}, R).$$
(2.3)

The DiFF $\widetilde{G}^{\triangleleft}$ thus can be extracted from $\widetilde{\Delta}^{\alpha}_{A}(z,k_{T},R)$ by the trace

$$\frac{\varepsilon_T^{\alpha\beta}R_{T\beta}}{z}\widetilde{G}^{\triangleleft}(z,\cos\theta,M_h^2) = 4\pi \mathrm{Tr}[\widetilde{\Delta}_A^{\alpha}(z,\cos\theta,M_h^2,\phi_R)\gamma^{-}\gamma_5].$$
(2.4)

As shown in Ref. [17], we can expand the twist-3 DiFF $\widetilde{G}^{\triangleleft}$ up to the *p*-wave level as

$$\widetilde{G}^{\triangleleft}(z,\cos\theta, M_h^2) = \widetilde{G}_{ot}^{\triangleleft}(z, M_h^2) + \widetilde{G}_{lt}^{\triangleleft}(z, M_h^2)\cos\theta.$$
(2.5)

Here, $\widetilde{G}_{ot}^{\triangleleft}$ originates from the interference of *s* and *p* waves, and $\widetilde{G}_{lt}^{\triangleleft}$ comes from the interference of two *p* waves with different polarization. The sin ϕ_R asymmetry of dihadron production in the single longitudinally polarized SIDIS may be expressed as [14],

$$A_{UL}^{\sin\phi_{R}}(x,z,M_{h}^{2}) = -\frac{\sum_{a} e_{a}^{2} \frac{|\vec{R}|}{Q} \left[\frac{|M|}{M_{h}} x h_{L}^{a}(x) H_{1,ot}^{\triangleleft,a}(z,M_{h}^{2}) + \frac{1}{z} g_{1}(x) \widetilde{G}_{ot}^{\triangleleft}(z,M_{h}^{2}) \right]}{\sum_{a} e_{a}^{2} f_{1}^{a}(x) D_{1,oo}^{a}(z,M_{h}^{2})}.$$
 (2.6)

Following the COMPASS convention, the depolarization factors are not included in the numerator and denominator.

3. Model calculation of $\widetilde{G}_{ot}^{\triangleleft}$

In the following, we present the calculation of unknown DiFF \tilde{G}_{ot}^{\leq} in the same spectator model. The corresponding diagram for the calculation in the spectator model is shown in Fig. 2. The left hand side of Fig. 2 corresponds to the quark-hadron vertex $\langle P_h; X | \bar{\psi}(0) | 0 \rangle$, while the right hand side corresponds to the vertex containing gluon rescattering $\langle 0 | igF_{\perp}^{-\alpha}(\eta^+)\psi(\xi^+) | P_h; X \rangle$. Therefore, the *s* and *p* wave contributions to the quark-gluon-quark correlator for dihardon fragmentation in the spectator model can be written as

$$\widetilde{\Delta}_{A}^{\alpha}(k,P_{h},R) = i \frac{C_{F} \alpha_{s}}{2(2\pi)^{2}(1-z)P_{h}^{-}} \frac{1}{k^{2}-m^{2}} \int \frac{d^{4}l}{(2\pi)^{4}} (l^{-}g_{T}^{\alpha\mu} - l_{T}^{\alpha}g^{-\mu})$$

$$\frac{(\not\!\!\!\!\!/ - \not\!\!\!\!\!/ + m)(F^{s\star}e^{-\frac{k^2}{\Lambda_s^2}} + F^{p\star}e^{-\frac{k^2}{\Lambda_p^2}}R\!\!\!/)(\not\!\!\!\!/ - P\!\!\!/_h - \not\!\!\!\!/ + m_s)\gamma_{\mu}(\not\!\!\!\!/ - P\!\!\!/_h + m_s)(F^s e^{-\frac{k^2}{\Lambda_s^2}} + F^p e^{-\frac{k^2}{\Lambda_p^2}}R\!\!\!/)(\not\!\!\!/ + m)}{(-l^- \pm i\varepsilon)((k-l)^2 - m^2 - i\varepsilon)((k-P_h - l)^2 - m_s^2 - i\varepsilon)(l^2 - i\varepsilon)},$$
(3.1)

where *m* and m_s are the masses of the quark and the spectator, and where the factor $(l^-g_T^{\alpha\mu} - l_T^{\alpha}g^{-\mu})$ comes from the Feynman rule corresponding to the gluon field strength tensor, as denoted by the open circle in Fig. 2. where Λ_s and Λ_p are the *z*-dependent Λ -cutoffs having the form [17]

$$\Lambda_{s,p} = \alpha_{s,p} z^{\beta_{s,p}} (1-z)^{\gamma_{s,p}}, \qquad (3.2)$$

and $2/\Lambda_{sp}^2 = 1/\Lambda_s^2 + 1/\Lambda_p^2$. The on-shell condition of the spectator gives the relation between k^2 and the trasnverse momentum \vec{k}_T

$$k^{2} = \frac{z}{1-z} |\vec{k}_{T}|^{2} + \frac{M_{s}^{2}}{1-z} + \frac{M_{h}^{2}}{z}.$$
(3.3)

Thus, the final result for $\widetilde{G}_{ot}^{\triangleleft}(z, M_h^2)$ has the form

$$\widetilde{G}_{ot}^{\triangleleft}(z, M_h^2) = \frac{\alpha_s C_F z^2 |\vec{R}|}{8(2\pi)^4 (1-z) M_h} \frac{1}{k^2 - m^2} \int d|\vec{k}_T|^2 e^{-\frac{2k^2}{\Lambda_{sp}^2}} \left\{ \operatorname{Im}(F^{s*} F^p) C + \operatorname{Re}(F^{s*} F^p) (k^2 - m^2) m_s [(A + zB) - I_2] \right\}.$$
(3.4)

Here, the coefficients C give

$$C = \int_0^1 dx \int_0^{1-x} dy \frac{-2m[(x+y)k \cdot p - yM_h^2] + m(k^2 - m^2)}{x(1-x)k^2 + 2k \cdot (k - P_h)xy + m^2x + m_s^2y + y(y-1)(k - P_h)^2},$$
(3.5)

where we can see that once m = 0, so the $\text{Im}(F^{s*}F^p)C$ term will disappears, it has no effect on the results. and the coefficients A and B come from the decomposition of the integral [15],

$$\int d^4 l \frac{l^{\mu} \,\delta(l^2) \,\delta((k-l)^2 - m^2)}{(k-P_h - l)^2 - m_s^2} = A \,k^{\mu} + B P_h^{\mu} \,, \tag{3.6}$$

and have the expressions

$$A = \frac{I_1}{\lambda(M_h, m_s)} \left(2k^2 \left(k^2 - m_s^2 - M_h^2 \right) \frac{I_2}{\pi} + \left(k^2 + M_h^2 - m_s^2 \right) \right), \tag{3.7}$$

$$B = -\frac{2k^2}{\lambda(M_h, m_s)} I_1 \left(1 + \frac{k^2 + m_s^2 - M_h^2}{\pi} I_2 \right).$$
(3.8)

The functions I_i appearing in the above equations are defined as [16].

4. Numerical estimate

In the following, we numerically estimate the $\sin \phi_R$ azimuthal asymmetry in the dihadron production off a longitudinally polarized proton by considering both the $h_L H_{1,ot}^{\triangleleft,a}$ term and the $g_1 \widetilde{G}_{ot}^{\triangleleft}$

term. Using Eq. (2.6), we can obtain the expressions of the *x*-dependent, *z*-dependent and M_h -dependent sin ϕ_R asymmetry as follows

$$A_{UL}^{\sin\phi_{R}}(x) = -\frac{\int dz \int dM_{h} 2M_{h} \frac{|\vec{R}|}{Q} \left[\frac{|M|}{M_{h}} (4h_{L}^{u}(x) + h_{L}^{d}(x)) x H_{1,ot}^{\triangleleft}(z, M_{h}^{2}) + \frac{1}{z} (4g_{1}^{u}(x) + g_{1}^{d}(x)) \widetilde{G}_{ot}^{\triangleleft}(z, M_{h}^{2})\right]}{\int dz \int dM_{h} 2M_{h} (4f_{1}^{u}(x) + f_{1}^{d}(x)) D_{1,oo}(z, M_{h}^{2})}$$

$$(4.1)$$

$$A_{UL}^{\sin\phi_{R}}(z) = -\frac{\int dx \int dM_{h} 2M_{h} \frac{|\vec{R}|}{Q} [\frac{|M|}{M_{h}} (4h_{L}^{u}(x) + h_{L}^{d}(x)) x H_{1,ot}^{\triangleleft}(z, M_{h}^{2}) + \frac{1}{z} (4g_{1}^{u}(x) + g_{1}^{d}(x)) \widetilde{G}_{ot}^{\triangleleft}(z, M_{h}^{2})]}{\int dx \int dM_{h} 2M_{h} (4f_{1}^{u}(x) + f_{1}^{d}(x)) D_{1,oo}(z, M_{h}^{2})},$$
(4.2)

$$A_{UL}^{\sin\phi_{R}}(M_{h}) = -\frac{\int dx \int dz \frac{|\vec{R}|}{Q} [\frac{|M|}{M_{h}} (4h_{L}^{u}(x) + h_{L}^{d}(x)) x H_{1,ot}^{\triangleleft}(z, M_{h}^{2}) + \frac{1}{z} (4g_{1}^{u}(x) + g_{1}^{d}(x)) \widetilde{G}_{ot}^{\triangleleft}(z, M_{h}^{2})]}{\int dx \int dz (4f_{1}^{u}(x) + f_{1}^{d}(x)) D_{1,oo}(z, M_{h}^{2})}.$$
(4.3)

For the other DiFFs $H_{1,ot}^{\triangleleft,a}(z,M_h^2)$ and $D_{1,oo}(z,M_h^2)$ needed in the calculation, we apply the same spectator model results from Ref. [17]. For the twist-3 distribution h_L , we choose the result in Ref. [18], as for the twist-2 PDFs f_1 and g_1 , we adopt the results calculated from the same model [19] for consistency. To compare estimate the sin ϕ_R asymmetry in SIDIS at COMPASS, we adopt the following kinematical cuts [14]

$$0.003 < x < 0.4, \quad 0.1 < y < 0.9, \quad 0.2 < z < 0.9, \\ 0.3 \text{GeV} < M_h < 1.6 \text{GeV}, \quad Q^2 > 1 \text{GeV}^2, \quad W > 5 \text{GeV}.$$
(4.4)

In Fig. 3, we plot the sin ϕ_R asymmetry in dihadron production off the longitudinally polarized

Figure 3: The sin ϕ_R azimuthal asymmetry in dihadron production off the longitudinally polarized proton as functions of *x* (left panel), *z* (central panel) and M_h (right panel) at COMPASS. The full circles show the COMPASS preliminary data [14] for comparison. The dashed curves denote the contribution from the $h_L H_{1,ot}^{\triangleleft}$ term, the dashed-dotted curves represent the contribution from the $g_1 \tilde{G}^{\triangleleft}$ term, and the solid lines display the sum of two contributions.

proton at the kinematics of COMPASS. The *x*-, *z*- and M_h -dependent asymmetries are depicted in the left panel, central, and right panels of the figure. We find that in the large *x* region and in the small M_h region, the contribution from the $h_L H_{1,ot}^{\triangleleft,a}$ term dominates the asymmetry. The $g_1 \tilde{G}^{\triangleleft}$ becomes important in the small *x* region and large M_h region. Combining the contributions from the two terms, our calculation agrees with the COMPASS preliminary data on the sin ϕ_R asymmetry.

5. Conclusion

In this work, we have studied the single longitudinal-spin asymmetry with a sin ϕ_R modulation of dihadron production in SIDIS. We found that the contribution to $\tilde{G}_{ot}^{\triangleleft}$ comes from the interference of the *s* and *p* waves. Using the numerical results of the DiFFs, we estimated the sin ϕ_R asymmetry and compared it with the COMPASS measurement. Our calculation shows that the $h_L H_{1,ot}^{\triangleleft}$ term dominates in the most of the kinematical region. However, the inclusion of the $g_1 G_{ot}^{\triangleleft}$ contribution yields a better description of the COMPASS data, especially in the large M_h region.

References

- [1] A. Kotzinian, Nucl. Phys. B441, 234 (1995).
- [2] A. Bacchetta, M. Diehl, K. Goeke, A. Metz, P. J. Mulders and M. Schlegel, J. High Energy Phys. 0702, 093 (2007).
- [3] K. Konishi, A. Ukawa, and G. Veneziano, Phys. Lett. B 78, 243 (1978).
- [4] I. Vendramin, Nuovo Cim. A 66, 339 (1981).
- [5] U. P. Sukhatme and K. E. Lassila, Phys. Rev. D 22, 1184 (1980).
- [6] A. Majumder and X. N. Wang, Phys. Rev. D 70, 014007 (2004), [hep-ph/0402245].
- [7] A. Bianconi, S. Boffi, R. Jakob and M. Radici, Phys. Rev. D 62, 034008 (2000) [hep-ph/9907475].
- [8] M. Radici, R. Jakob and A. Bianconi, Phys. Rev. D 65, 074031 (2002) [hep-ph/0110252].
- [9] A. Bacchetta and M. Radici, Phys. Rev. D 67, 094002 (2003) [hep-ph/0212300].
- [10] M. Radici, A. M. Ricci, A. Bacchetta and A. Mukherjee, Phys. Rev. D 94, 034012 (2016) [arXiv:1604.06585 [hep-ph]].
- [11] M. Radici and A. Bacchetta, Phys. Rev. Lett 120, 192001 (2018)
- [12] A. Courtoy, A. Bacchetta, M. Radici and A. Bianconi, Phys. Rev. D 85, 114023 (2012) [arXiv:1202.0323 [hep-ph]].
- [13] A. Bacchetta and M. Radici, Phys. Rev. D 69, 074026 (2004), [hep-ph/0311173].
- [14] S. Sirtl, in 22nd International Symposium on Spin Physics (SPIN 2016) Urbana, IL, USA (unpublished) arXiv: 1702.07317, http://www.indiana.edu/spin2016/.
- [15] Z. Lu and I. Schmidt, Phys. Lett. B 747, 357 (2015), [arXiv:1501.04379 [hep-ph]].
- [16] D. Amrath, A. Bacchetta and A. Metz, Phys. Rev. D 71, 114018 (2005), arXiv:hep-ph/0504124.
- [17] A. Bacchetta and M. Radici, Phys. Rev. D 74, 114007 (2006), [hep-ph/0608037].
- [18] Z. Lu, Phys. Rev. D 90, 014037 (2014), [hep-ph/1404.4229].
- [19] A. Bacchetta, F. Conti and M. Radici, Phys. Rev. D 78, 074010 (2008) [arXiv:0807.0323 [hep-ph]].