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Frame-independent angular distributions as density matrix invariants Oleg Teryaev

1. Introduction

Dilepton angular distribution in decays of vector particles can be described with the help of
a general expression in Eq. 1.1. This expression has eight angular coefficients which strongly
depend on a choice of a reference frame used to measure coefficients. That is why an adequate
comparison between observables measured in different coordinate systems (and between theory
and experiment) may be performed for frame-independent combinations of angular coefficients.
Such quantities provide a powerful tool for data analysis since they can reveal systematic biases
that were not taken into account initially.

1
σ

dσ

dΩ
=

3
4π

1
3+λθ

(
1+λθ cos2

θ +λθφ sin2θ cosφ +λφ sin2
θ cos2φ +λ⊥φ sin2

θ sin2φ

+ λ⊥θφ sin2θ sinφ +2Aθ cosθ +2Aφ sinθ cosφ +2A⊥φ sinθ sinφ
) (1.1)

The idea that angular distribution can be fully described by set rotational invariants analogous
to Lam-Tung relation first appeared in [1]. This assumption was developed in the series of pa-
pers [1, 2, 3, 4, 5], where authors have derived and studied several SO(2) invariant relations that
are preserved under special rotations around a coordinate axis. Recently several works focused on
the derivation of general SO(3) invariants came out [6, 7, 8]. Later in this proceeding, we recap the
method used in [8] and the results obtained.

2. Rotational invariants of density matrix

To derive general SO(3) rotational invariants of the angular distribution in the form of Eq. 1.1
we express the spacial part of the hadronic tensor (density matrix) corresponding to the process in
terms of observables (angular coefficients) and obtain the result in Eq. 2.1. The procedure used to
obtain Eq. 2.1 was developed for the case of parity conserving decays in [9].

W =
2

3+λθ


1−λθ

2 −λθφ − iA⊥φ −λ⊥θφ + iAφ

−λθφ + iA⊥φ

1+λθ−2λφ

2 −λ⊥φ − iAθ

−λ⊥θφ − iAφ −λ⊥φ + iAθ

1+λθ+2λφ

2

 (2.1)

Now when we have the expression of the hadronic tensor in terms of observables our task is to
find rotational invariants of this 3×3 matrix. However, it is not as straightforward as it might seem.
In [6] and [8] it was discussed that angular distribution in Eq. 1.1 has five SO(3) invariants. On the
other hand, it is known that matrix in Eq. 2.1 can’t have more than two independent eigenvalues
due to imposed normalization condition Tr W = 1. This observation raises a question: What is a
source of remaining three invariants?

The answer can be found if we perform a decomposition of the hermitian matrix W into a sum
of unit trace-1 matrix, traceless symmetric matrix Ws and traceless antisymmetric matrix Wa:

W =
1
3
·1+Ws + iWa. (2.2)

Elements of matrices Ws and Wa transform independently since rotation of a coordinate frame can
be performed by orthogonal matrices with all the real elements. From this, it follows that invariants
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of matrices Ws, Wa, Ws+ iWa and various combinations of them are also invariants of the total matrix
W . However, eigenvalues of the mentioned matrices turn out to be very cumbersome expressions
and it is more convenient to use as invariants combinations of eigenvalues that appear as coefficients
of characteristic polynomials. Eq. 2.3 lists equations on eigenvalues for matrices Wa, Ws, Ws + iWa

and Was

w(a)
(

w(a)2
+4U1

)
= 0 (2.3a)

w(s)3− 4
3

U2w(s)− 8
27

T = 0 (2.3b)

w3−
(

4U1 +
4
3

U2

)
w− 8

27
(T +R) = 0 (2.3c)

w(as)
(

w(as)2
+

16
9

M
)
= 0 (2.3d)

while Eq. 2.4 defines the notation. All the introduced in Eq. 2.4 expressions can be written as
combinations of eigenvalues which are rotation invariant. That is why U1, U2, T , R and M form a
set of five rotational invariants we were looking for. In [8] we showed that it is possible to express
known from [6] SO(3) invariants in terms of ones that we have derived.

U1 =
A2

θ
+A2

φ
+A2

⊥θφ

(3+λθ )2 , U2 =
λ 2

θ
+3
(

λ 2
φ
+λ 2

θφ
+λ 2

⊥φ
+λ 2

⊥θφ

)
(3+λθ )2 (2.4a)

T =
1

(3+λθ )
3

((
λθ +3λφ

)(
2λ

2
θ −6λθ λφ +9λ

2
θφ

)
+ 9

(
λθ λ

2
⊥θφ −2λθ λ

2
⊥φ +6λθφ λ⊥θφ λ⊥φ −3λφ λ

2
⊥θφ

))
(2.4b)

R =
1

(λθ +3)3

(
54
(
Aθ Aφ λθφ +Aθ A⊥φ λ⊥θφ +A⊥φ Aφ λ⊥φ

)
+ 9λθ

(
2A2

θ −A2
⊥φ −A2

φ

)
+ 27λφ

(
A2

φ −A2
⊥φ

))
(2.4c)

M =
1

(3+λθ )4

{
A2

θ

(
λ

2
θ −9λ

2
φ −9λ

2
⊥φ

)
−A2

φ

(
2λθ

(
λθ +3λφ

)
+9λ

2
⊥θφ

)
+ A2

⊥φ

(
6λθ λφ −2λ

2
θ −9λ

2
θφ

)
+ 6Aθ A⊥φ

(
λ⊥θφ

(
λθ −3λφ

)
+3λθφ λ⊥φ

)
+ 6Aφ

[
Aθ

(
λθφ

(
λθ +3λφ

)
+3λ⊥θφ λ⊥φ

)
+ A⊥φ

(
3λθφ λ⊥θφ −2λθ λ⊥φ

)]}
(2.4d)

3. Positivity constrains on invariants

The above-described method is not only allowed to write down general SO(3) frame indepen-
dent combinations of angular coefficients, but it also gives a way to restrict their values. This can be
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done because hadronic tensor is positive defined quadratic form, which together with normalization
condition requires the following relations between eigenvalues of the total matrix W to hold

0≤ w1,2,3 ≤ 1,

0≤ w1w2 +w1w3 +w2w3 ≤
1
3
,

0≤ w1w2w3 ≤
1
27

.

(3.1)

In terms of invariants from Eq. 2.4 these inequalities reduce to

U1 +
1
3

U2 ≤
1
12

, U1 ≤
1
12

, U2 ≤
1
4

(3.2)

and
−1

8
≤ R+T ≤ 3

8
. (3.3)

4. Special invariants

Hadronic tensor in the form of Eq. 2.1 also allows finding invariant under rotations around
coordinate axes defined by coordinate vectors

ez =

 1
0
0

 , ex =

 0
1
0

 , ey =

 0
0
1

 . (4.1)

One invariant for each of three rotations comes from the contraction of the hadronic tensor with a
vector that defines the rotational axis. Two more come from the symmetric and antisymmetric part
of a minor corresponding to rotational axis. For axis z this gives invariants

Iz =
1−λθ

3+λθ

, I(a)zz =
A2

θ

(3+λθ )2 , I(s)zz =
λ 2
⊥φ

+λ 2
φ

(3+λθ )2 (4.2)

for axis x we obtain

Ix =
1+λθ −2λφ

3+λθ

, I(a)xx =
A2

φ

(3+λθ )2 , I(s)xx =
4λ 2
⊥θφ

+(λθ +λφ )
2

(3+λθ )2 (4.3)

and, finally, for rotations around y-axis

Iy =
1+λθ +2λφ

3+λθ

,
A2
⊥φ

(3+λθ )2 , I(s)yy =
4λ 2

θφ
+(λθ −λφ )

2

(3+λθ )2 . (4.4)

As one can see Iz, Ix and Iy are just diagonal elements of matrix W . One can notice that invari-
ance of (4.2) is equivalent to the invariance of λθ . This result and also the invariance of (4.3) were
previously derived in [5]. Invariant Iy is a well known parameter F introduced in [1]. Invariant I(s)yy

was also derived in [10] and later rederived in [6].
Note, that because of the positivity and normalization conditions special invariants can be

restricted:
0≤ Iz, Ix, Iy ≤ 1, (4.5a)
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0≤ Izz, Ixx, Iyy ≤
1
4
, (4.5b)

where Izz is a minor of the matrix W obtained by removing the first row and the first column, Ixx

– by removing the second row and the second column, Iyy – by removing the third row and the
third column. The last inequality is relevant because minors are equal to the product of two corre-
sponding eigenvalues, which are bound by normalization condition and positivity as we discussed
above.

5. Conclusions

It was shown that the expression of the hadronic tensor in terms of observables can be used
to derive and constrain rotational invariants of dilepton angular distribution in decays of vector
states. The obtained SO(3) invariants listed in Eq. 2.4 are given by more compact expressions than
invariants derived in [6] with the maximum power of angular coefficients being reduced from the
fifth to the fourth power. We also discussed how the developed formalism can be used to derive
invariants for rotations around coordinate axes.

The analysis that we have done is model-independent and all the results mentioned above are
equally applicable for decays of virtual photons, gauge bosons and composed states with spin one.
In paper [8] one can find values of invariants calculated for data on Z-boson decays and J/psi-
meson decays.

In Eq. 3.2 and Eq. 3.3 we listed restrictions on invariants U1, U2, T and R. Writing down
explicit restrictions on invariant M is one of the possible avenues for future research. Another thing
that also might be interesting to try is the direct extraction of invariants from experimental data.
However, the following fact requires careful treatment. When we use invariants as parameters of
the angular distribution, this will lead to decomposition of the distribution into complex functions
of sines and cosines, which are not necessarily orthogonal.
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