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The exact time-dependent solution is obtained for a magnetic field growth during a spherically
symmetric accretion into a black hole (BH) with a Schwarzschild metric. Magnetic field is in-
creasing with time, changing from the initially uniform into a quasi-radial field. Equipartition
between magnetic and kinetic energies in the falling gas is supposed to be established in the de-
veloped stages of the flow. Estimates of the synchrotron radiation intensity are presented for the
stationary flow. The two-dimensional stationary self-similar magnetohydrodynamic solution is
obtained for the matter accretion into BH, in a presence of a large-scale magnetic field, under
assumption, that the magnetic field far from the BH is homogeneous. At the symmetry plane per-
pendicular to the direction of the distant magnetic field, the dense quasi-stationary disk is formed
around BH, which structure is determined by dissipation processes. The radiative efficiency of the
magnetized disk is very high, reaching ∼ 0.5Ṁ c2. This model of accretion was called recently as
a magnetically arrested disk (MAD). Numerical simulations of MAD, and its appearance during
accretion into neutron stars are considered and discussed.
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1. Magnetic field evolution in spherical accretion

Consider changes in the frozen magnetic field structure, without a back reaction, in the spher-
ical accretion flow onto a black hole with a mass M, in presence of a free-fall velocity, and initially
uniform magnetic field. It is described by following equations, written in GR [6]

d
dt
(
√
−gu−1

0 Br) = 0;
d
dt
(
√
−gu−1

0 Bθ ) = 0;
d
dt

=
∂
∂ t

+
ur

u0
∂
∂ r

. (1.1)

The first and the second equations in (1.1) are related to the conservation of the magnetic flux along
the radial and tangential directions. In Newtonian limit the following solution for the evolution with
time of the r and θ physical components of the magnetic field was obtained [6], see also [2].

rB =

(
1+

3
2

ct√rg

r3/2

)4/3

B0 cosθ , θ B =−
(

1+
3
2

ct√rg

r3/2

)1/3

B0 sinθ . (1.2)

υr = αc
√

rg

r
, ρ =

1
α

Ṁ
4πcr2

√
r
rg
, (B2

r )max = ρυ2
r = α

Ṁc
r2

√
rg

r
, α . 1. (1.3)

Figure 1: Alexandr Ruzmaikin (Left) A qualitative picture of a stationary accretion of matter with a large
scale magnetic field onto BH, Arrows indicate the direction of motion of the matter. The magnetic field far
from the star is in the direction of the z-axis. The infalling matter forms a disk in the plane θ = π/2, which
slowly settles to the star. In the flow region EB ∼ Ekin, and rotation is entirely absent (Right), from [6].

Sketch of the magnetic field threading an accretion disk is shown in Fig.1. Shown increase of the
field owing to flux freezing in the accretion disk matter.

2. Radiation flux in presence of chaotic magnetic field

For given values of ρ∞, T∞, M, the mass flux is determined by
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Ṁ = 4πρυrr2 =
1032

c2

(
M

M⊙

)2( ρ∞

10−24 g cm−3

)
×
(

T∞

104 K

)−3/2

g s−1 . (2.1)

The free-free and free-bound radiation of non-relativistic (NR), and ultra-relativistic (UR) maxwel-
lian plasma is determined by formulae [7]

ε f f +ε f b ≈ 2×1022ρT 1/2 erg g−1 s−1 (NR); ε rel
f f ≈ 2×1016ρT ln

kT
mec2 erg g−1 s−1 (UR) (2.2)

The total luminosity in Lt in this case corresponds to efficiency ε ∼ 10−8 for average interstellar
parameters [13]

Lt = L f f +L f b = 4π
∫ ∞

rin

ρ(ε f f + ε f b)r2dr erg s−1, rin ≈ 1.5 rg. (2.3)

It was shown in [13], that in presence of a magnetic field frozen in plasma, the efficiency of the
kinetic energy conversion into heat increases drastically, approaching η ≈ 10%. When the gas
flows radially, the lines of magnetic force stretch along a radius, Br ∼ r−2, and the magnetic energy
per unit volume EM ∼ B2 ∼ r−4 increases more rapidly than the kinetic energy Ekin ∼ ρυ2 ∼
Ṁυ/r2 ∼ r−5/2 (Ṁ = 4πρυr2 is the stationary mass flux, free-fall velocity υ ∼ r−1/2). Since the
energy EM cannot physically exceed Ekin, it was assumed in [13] that an equipartition of energy
EM ≈ Ekin is supported by the dissipation of magnetic energy. The excess of magnetic energy
is consumed by plasma heating, which was taken into account in [6]. It leads to an increase in
efficiency η to 30% that may be considered as a realistic estimate under these assumptions.

If EM ∼ r−4 is the magnetic field energy with no dissipation, and E ′
M = Ekin ∼ r−5/2 is the

energy of the magnetic field in a flow, then an increase of entropy per unit volume along a radius
due to the field annihilation in a stationary flow is given by

QM =

(
ρT

dS
dr

)
M
=

(
dEM

dr
− dE ′

M

dr

)
EM=E ′

M

=−4
EM

r
+

5
2

EM

r
=− 3

2r
B2

8π
. (2.4)

The energy balance equation

T
dS
dr

=
dE
dr

− P
ρ2

dρ
dr

=
QM

ρ
− εB

υr
, (2.5)

was solved using (2.4), and the following relations, where εB (erg g−1 s−1) is a rate of magneto-
bremsstrahlung losses of the Maxwell plasma [4, 6], with magnetic field equipartition, so that

B2

8π
=

1
2

ρυ2
r , υr = αυ f f = α

√
2GM

r
, B2

⊥ =
2
3

B2 , (2.6)

εB = 2
e2

mpc

(
eB⊥
mec2

)2 kT
mec2 ≈ 0.46T B2

⊥ erg g−1 s−1 for kT ≪ mec2 (NR), (2.7)

εB = 8
e2

mpc

(
eB⊥
mec2

)2( kT
mec2

)2

≈ 3.2×10−10 T 2B2
⊥ ergg−1 s−1 for kT ≫ mec2 (UR).

(2.8)
As was shown in the paper [5], the condition Te ≈ Tp is supported in the quasi-spherical accretion
flow in presence of a chaotic magnetic field annihilation. It was obtained [6], that ε ∼ 0.1 from
[13] grows until ε ∼ 0.3 with account of heating at magnetic field annihilation.
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Figure 2: Magneto-bremsstrahlung spectrum of a BH of M = 10M⊙ for a spherically symmetric accre-
tion and random magnetic field at ρ∞ = 10−24 g · cm−3, T∞ = 104 K, α2 = 1/3. The solid lines represent
asymptotic dependencies, dashed lines give extrapolations, from [1].

3. Self-similar solution for the stationary flow outside the symmetry plane, in
presence of a uniform magnetic field at infinity

Let us consider a flow in the inner supersonic region, where pressure is negligible and such a
flow is essentially directed by the magnetic field. In the axial symmetry case, the stationary picture
will be two-dimensional. The basic equations for two-dimensional accretion onto a gravitating
centre (BH) with mass M, of the magnetized gas with perfect conductivity, and without pressure
are written in the form [7]

υr
∂υr

∂ r
+

υθ
r

∂υr

∂θ
−

υ2
θ
r

=−GM
r2 − Bθ

4πρr

[
∂ (rBθ )

∂ r
− ∂Br

∂θ

]
, (3.1)

υr
∂υθ
∂ r

+
υθ
r

∂υθ
∂θ

+
υrυθ

r
=

Br

4πρr

[
∂ (rBθ )

∂ r
− ∂Br

∂θ

]
, (3.2)

1
r

∂
∂ r

(r2ρυr)+
1

sinθ
∂

∂θ
(sinθρυθ ) = 0 , (3.3)

1
r

∂
∂ r

(r2Br)+
1

sinθ
∂

∂θ
(sinθ Bθ ) = 0 , (3.4)

υrBθ −υθ Br = 0. (3.5)

We assumed that a picture of the flow is stationary (d/dt = 0), two-dimensional ∂/∂ϕ = 0, and
the matter falling to a BH has no angular momentum υϕ = Bϕ = 0. Eqs. (3.1)-(3.2) are the r, and
θ components of the Euler equation; (3.3) is the continuity equation; (3.4) defines zero divergency
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of the magnetic field (divB = 0), and (3.5) defines the ‘freezing’ of the magnetic field, when the
flow patterns are parallel to the magnetic field lines. The magnetic force on the right sides of Eqs.
(3.1),(3.2) is perpendicular to the streamlines. The Bernoulli equation is obtained by multiplying
(3.1) by υr, (3.2) by υθ and combining them,

υr
∂υ2

∂ r
+

υθ
r

∂υ2

∂θ
=−2υr

GM
r2 (3.6)

We did not find a general solution of the system (3.1)-(3.5), but have found a self-similar solution
of this system in the form

υr =−
√

2GM/r f (θ), υθ =
√

2GM/r g(θ), ρ = ρ(θ), B = aρv, a = const. (3.7)

The last relation (3.7) is connected with a coincidence of the magnetic field and the streamlines
directions, follows from comparison of Eqs. (3.3) and (3.4). Substituting two first relations from
(3.7) into Eq.(3.6) we find that it is satisfied when

f 2 +g2 = 1. (3.8)

It is convenient, using (3.7),(3.8), to transfer from ( f ,g,B,υ) to new variables (z,y)

f = cosz, g = sinz y =
a2

4π
ρ =

B2

4πρυ2 . (3.9)

Here y is equal to the ratio of the magnetic and kinetic energies. For y and z, we have two equations
of the first order

dy
dθ

= y(1− y)
cotz− cotθ

sin2 z− y
· sin2 z, (3.10)

dz
dθ

=
1
2
− sinzcosz(cotz− cotθ)

sinz− y
y (3.11)

A solution for zero magnetic field is y = 0, z = θ/2. Using Eq. (3.3), instead of the third relation
(3.7), we obtain the solution in the form [7]

υr =−
√

2GM/r cos(θ/2), υθ =
√

2GM/r sin(θ/2), ρ(r,θ) = ρ0Φ
(

r
R

sin2 θ
2

)
tanθ/2,

(3.12)
where Φ is an arbitrary function. This solution describes axially symmetric streamline around a
gravitational center of particles flow with a possible angular momentum at infinity [14]. We present
here a solution with the spherically-symmetric distribution of matter at infinity. Deviations from
the spherical symmetry around a BH appear only due to the magnetic field. It was shown in [7, 2],
that the only physically relevant solution exist at y = 1, denoting equipartition between magnetic
and kinetic energies everywhere. In this case only one equation remains

dz
dθ

=
3
2
− tanz · cotθ ; with the boundary condition z(0) = 0, (3.13)
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corresponding to the radial motion of the matter on the pole. The numerical solution of Eq. (3.13)
in the region 0 ≤< θ ≤ π/2 is obtained in [7]. The density in this solution is constant ρ = ρ0, and
the velocity υ is equal to the Alfven velocity υA = B√

4πρ . The pattern of the streamlines, coinciding
with magnetic force lines is shown schematically by dashed lines in Fig. 3, see [7]. Equation (3.13)
does not change under a mirror transformation θ → π − θ and z → −z. So, the solution is anti-
symmetrically extended to the lower hemisphere π/2 < θ ≤ π , with υr having the same sign as
at the upper hemisphere (directed to the centre,) and υθ changes its sign (see Fig.3). Therefore
the plane θ = π/2 occurs to be singular. In this plane, a quasi-stationary disk is formed, in which
matter moves to a BH, penetrating through magnetic field lined due to finite electrical conductivity.

Figure 3: Schematic pattern of magnetic field lines in the matter around a BH for a field which is uniform at
infinity, with the inclusion of distortions due to disk currents. The non-perturbed external magnetic field is
shown by dashed lines. The solid lines determine the magnetic field lines, influenced by the azimuthal elec-
trical currents in the disk. The arrows indicate a direction of a gas flux velocity, with account of perturbations
from the disk, from [7].

4. Accretion disk around BH with large scale magnetic field (non-rotating disk)

If the characteristic scale of non-uniformity of magnetic field is much larger, that the accretion
radius ra, the flow looses its spherically symmetry,

ra =
GM
υ2

s
, where υs is the sound velocity in the gas . (4.1)

For a uniform magnetic field the accretion symmetry is cylindrical. If a BH is at rest, a stationary
pattern of magnetic lines is established, the gas flows along them and forms a disk in the plane
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Figure 4: Three zones around a BH during accretion of a gas with a frozen magnetic field, homogeneous at
infinity. (I) A zone of the stationary hydrodynamic flow with a non-stationary magnetic field. (II) A zone of
the stationary flow in which the transition from the subsonic to the supersonic flow takes place. (Ill) A zone
of the stationary supersonic flow. Dashed line marks a place where the velocity reaches the critical sound
value. At the plane perpendicular to the magnetic field direction at infinity, thin disk forms around a BH. In
zone II the disk becomes thicker and merges with the surrounding flow. Arrows in the direction of the flow
velocity have opposite signs in the lower and upper parts, the magnetic field has the same direction there.
The ring-like stagnation zone formed in the subsonic region of the stationary flow and situated around the
symmetry plane is shown by the horizontal strokes. The sizes of two inner zones are slowly increasing with
time, see [7].

of symmetry. A qualitative picture of the flow is shown in Fig. 3. At a finite conductivity in the
disk a gas infiltrates through force lines of magnetic field towards a BH. The formation process,
the structure of a disk supported by a magnetic field and its radiation had been considered in [7].
Let us consider an equilibrium of a non-rotating disk with a balance between magnetic forces and
gravity:

GMΣ
r2 =

1
c

Bθ Iφ ≈ 2π
c2 I2

φ . (4.2)

Here, Σ = 2hρ is the surface density, ρ is the average density of the gas, Iφ is a circular electrical
current surface density. We have roughly [3]

Bθ ≈ Br ≈
2π
c

Iφ . (4.3)

Equilibrium along z axis is supported by a balance between the vertical pressure gradient, and
gravity

dP
dz

=−ρGM
r2

z
r
, h ≈

(
r3

GM
P
ρ

)1/2

. (4.4)
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The disk heating due to extraction of the gravitational energy, is related to a slow motion of the disk
into a BH, and due to additional heating by matter falling to the disk along magnetic field lines,
at an almost free-fall velocity. Finally we obtain an expression for the energy flux from unit disk
surface in the form

F =
GMṀ
4πr3

[
1+

1
2

( r
R

)3/2
]
. (4.5)

From the mass conservation law we obtain an expression for the radial velocity of the disk matter
υrd in the form

υrd =− Ṁ
2πrΣ

[
1−

( r
R

)3/2
]
. (4.6)

Here Ṁ is determined by the values at infinity, see Eq. (2.1), R ≈ ra using (4.1). Ohmic dissipation
takes place in the disk, leading to gas motion through the magnetic field. The surface electrical
current density Iφ is determined by an equation

GMṀ
4πr3

[
1−

( r
R

)3/2
]
=

I2
φ

4πσ
, (4.7)

where σ is a conductivity. If the disk is opaque in vertical direction to the radiation, the energy is
carried to its surface by a radiative heat conductivity, so that we have approximately

acT 4 = κΣF , (4.8)

where T (r) is the mean disk temperature. For an optically transparent disk we have

2F = Σ(ε f f + εB) . (4.9)

This relation includes plasma bremsstrahlung ε f f and magneto-bremsstrahlung εB. The equation of
state in optically thin region is determined by a gas pressure Pg = ρRT, R is the gas constant. In
optically thick region the radiation pressure should be added Prad = aT 4/3. The input into opacity
k = ke + kk comes from the electron scattering ke = and krammers opacity f f + f b

κ f f +κb f ≈ 2×1024ρT−7/2 at kT ≪ me c2; κ f f = 5×1018 ρ
T 3 at kT ≫ me c2, (4.10)

κes = 0.19(1+XH).

Here XH is the hydrogen mass fraction in accreting matter. The coefficient of the turbulent electrical
conductivity is approximated by an expression [7]

σ ≈ σturb ≈
c2

α̃4πh
√

P/ρ
, α̃ = 0.1−0.01 . (4.11)

Equations (4.2)-(4.9) with known functions P, κ , σ , ε f f and εB on the average disk temperature
T and density ρ , determine a structure of a non-rotating disk with magnetic field around a BH
[7]. The efficiency of the magnetically supported disk, which was called in [12] as magnetically
arrested disk (MAD), is very high, about 0.5, because the gravitational energy always has time to
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Figure 5: Snapshot of magnetic lines in model with βing = 100, at two subsequent moments. The BH
is located on the left, and small open circle corresponds to the inner boundary around the black hole at
Rin = 2Rg. The axis of rotation is in the vertical direction. The domain in the figure has a radial size 100Rg

along the equatorial plane and represents a fraction of the full computational domain with Rout = 220Rg.
The poloidal field lines lying in the meridional plane are shown. The accretion disk transports the vertical
magnetic flux inward, which is accumulated in the vicinity of a BH. Small-scale magnetic loops are the result
of turbulent motions in the disk and disk corona. (a) Period of accretion, in which most of the accumulated
magnetic flux is outside the black hole horizon. (b) Accretion period, in which all the accumulated flux goes
through the horizon, [10].

convert into heat during stationary disk accretion. For the inner radius of ∼ 1.5rg, the luminosity
of the stationary turbulent disk is written as

L ≈ GMṀ
rg

=
1
2

Ṁc2 = 5 ·1031
(

M
M⊙

)2( ρ∞

10−24 g cm−3

)
×
(

T∞

104 K

)−3/2

erg s−1, (4.12)

and magnetic field distribution over the turbulent disk is written as [7]

B = 109 Gs
(

M⊙
M

)1/2(rg

r

)3
α−1/2, rg =

2GM
c2 . (4.13)

The general picture of the MAD accretion of a non-rotating gas onto a BH is given in the Fig.4.

5. Numerical simulations of the magnetically arrested disk

The authors [12] have found a lucky name for the old model of magnetically supported disk,
stressing the high energetic efficiency of such accretion flow. Numerical simulations of this model,
where rotation was included, have shown a rapid angular momentum transfer outward from the
central regions of the accretion disk, so that matter is falling onto a black hole being almost non-
rotating. One of the first such simulation [10] confirmed in general the formation of MAD model.
The results of this simulation are presented in Fig.5. Two-temperature, magnetically arrested disc
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simulations of the jet from the supermassive black hole in M87 have been done in [9], using full
general relativistic description. The results, which are qualitatively similar to [10], are shown in
Fig.6. In both simulation the mildly relativistic jet was formed, and energy extraction from the
rotating black hole was important for its formation.

The self-similar solution, and a structure of the disk, supported by magnetic field are obtained
analytically for the nonrotating matter accretion. This solution may be applied only for inner parts
of the accretion disk, where angular momentum is carried away by magnetic stresses, accord-
ing to simulation in [9, 10]. The jet formation, obtained in simulations happens together with a
high-efficiency transformation into the radiation flux, in presence of a rotating BH, with additional
energy supply from its rotational energy. Alternative accretion model with low radiative efficiency,
and main energy flux in the form of the disk wind outflow (ADIOS model) was discussed in [8].

Figure 6: Additional time- and azimuth-averaged properties of the two simulations. From left to right,
the quantities displayed are the density ρ in g cm−3, the bulk Lorentz factor γ , the plasma magnetization
σi, the ratio of ion thermal pressure to magnetic pressure βi, and the ratio of radiation pressure to thermal
pressure βR. In the first column, white contours show the poloidal magnetic field in the averaged data. In the
remaining columns, the solid white contour denotes the σi = 1 surface. The dashed black contour shows the
Be = 0.05 surface defining the jet boundary. The dashed white contour in the third panel shows the σi = 25
surface; this is the maximum σi included in the radiative transfer, from [9].

Note at the end, that:

*) Quasars and AGN contain supermassive black holes.

**) More than ten X - ray binaries in the Galaxy have stellar mass black holes. These binaries
with high mass optical components show variabilities at different time scales, and jet formation,
similar to quasars, and are called as microquasars.

***) Jets are observed in objects with black holes, which, most probably, are collimated ejec-
tions from magnetized accretion disks [11].
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