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1. Introduction

Non-thermal emission from astrophysical sources, routinely observed from radio frequencies
to the very high-energy gamma-ray domain, generically results from radiative emission processes
of particles that have been accelerated to high, possibly very high, energies.

In the realm of highly conducting astrophysical plasmas, particle acceleration proceeds in
motional electric fields EEE, which are related to their magnetic field counterpart BBB and to the plasma
velocity vvvp by the ideal Ohm’s law, EEE = −vvvp×BBB/c. Accordingly, such electric fields vanish in the
plasma rest frame (where vvvp = 0), hence particles cannot be accelerated there, but simply deflected
by the magnetic field. Consequently, the particle cannot steadily gain energy, in any frame, if
the velocity field is uniform throughout space. The guiding principle of Fermi-type acceleration
scenarios relies on the observation that, if the velocity field is not uniform, one cannot define a
global reference frame in which the electric field vanishes everywhere, hence actual energization
becomes possible [1].

One commonly distinguishes various schemes of Fermi acceleration, e.g. stochastic (Fermi-II)
acceleration in turbulence [2], diffusive shock (Fermi-I) acceleration [3], shear acceleration [4] etc.,
but, in truth, they only differ one from the other in how the velocity field is distributed throughout
space. In order to describe the physics of acceleration, and more specifically, to evaluate the ac-
celeration timescale tacc which is widely used in phenomenological applications, various methods
have been proposed in the literature, with quite often a specific method applied to a given setting.

The present paper presents an original method to characterize Fermi-type acceleration, which
has the advantage of being more versatile than other methods, in the sense that it can apply to
any scenario, to sub- or ultra-relativistic flow velocities, and curved or flat geometries (Sec. 2). In
some cases, it provides a simpler way to quantify how, and to what extent, the particle can gain
energy. As applications, the following discusses three original cases, so far largely unexplored in
the literature: stochastic unipolar induction in a magnetized wind from a compact object (Sec. 3.1),
Fermi-type acceleration in black hole environments (Sec. 3.2) and stochastic acceleration in rela-
tivistic turbulence (Sec. 3.3). The present discussion follows that in [5], on which it is based.

2. Formalism

The idea behind the present method is to track the particle momentum in a sequence of comov-
ing frames, defined along the particle trajectory, in which the electric field exactly vanishes. At any
point x of spacetime, one can indeed define an instantaneous frame of rest through a deboost by the
four-velocity uuu(x) = EEE×BBB/

(
B2−E2

)
. Because the velocity field is not uniform, this change of

reference frame is not global and is not achieved through a Lorentz transform, but rather through
the definition of a local accelerated frame, written Ru in the following. This can be done through
the construction of an orthonormal tetrad, which is more conveniently characterized by the vier-
beins eâ

µ , which relate the components of four-vectors in the laboratory frame RL (indexed with
greek indices) to those in Ru (indexed with hatted latin indices), e.g.

p̂â = eâ
µ(x) pµ , pµ = eµ

â(x) p̂â , (2.1)

with eµ
â(x) the inverse vierbein. See [5] for details. For non-Cartesian or curved geometries, an

intermediate reference frame RL must be defined, indexed by barred latin letters, and correspond-
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ing vierbein eL
a

µ . This frame sets up a locally inertial frame at zero velocity at each spacetime
point. If the background metric is written gµν(x), and the Minkowski metric ηac, then eL

a
µ can be

obtained from:
ηac eL

a
µ(x) eL

c
ν(x) = gµν(x). (2.2)

Then, because RL and Ru are locally inertial reference frames defined at the same spacetime point,
they can be related one to the other through a Lorentz transform corresponding to a pure (de-)boost
along the four-velocity ua (as defined in RL), with ua = eL

a
µ uµ . Writing this transform as Λâ

c,
the vierbein eâ

µ(x) is eventually obtained as

eâ
µ(x) = Λ

â
c(x) eL

c
µ(x) . (2.3)

The Ricci rotation coefficients Γ̂â
b̂ĉ

characterize the space-time dependence of the vierbein,

Γ̂
â
b̂ĉ = −eβ

b̂ eγ
ĉ ∇γ eâ

β , (2.4)

and the symbol ∇γ (written in short as ;γ in the following) represents a covariant derivative with
respect to the metric gµν(x).

The connection Γ̂â
b̂ĉ

enters the equation of motion in Ru:

d p̂â

dτ
=

q
m

F̂ â
b̂ p̂b̂ − Γ̂

â
b̂ĉ

p̂b̂ p̂ĉ

m
. (2.5)

Here, F̂ â
b̂ denotes the electromagnetic strength tensor in the (locally inertial) comoving frame and

τ represents proper time. Because F̂ 0̂
b̂ = 0 by construction (vanishing electric field), the energy

of the particle, p0̂, evolves only through the influence of the effective gravity, that derives from the
non-inertial nature of the accelerated frame Ru. Equations (2.4) and (2.5) illustrate the fact that a
spacetime dependence of the plasma four-velocity u is mandatory to achieve energization.

In the laboratory frame, the rate of energy gain of a particle can be obtained as〈
∆pt

∆t

〉
= lim

∆t→+∞

1
∆t

〈
et

â(∆τ)
∫

∆τ

0
dτ1

d p̂â

dτ1

〉
. (2.6)

The explicit definition of the average 〈. . .〉 depends on the case at hand, and must be specified
with care, of course. Similarly, one can define a second-order moment to characterize diffusion
processes, 〈

∆pt ∆pt

∆t

〉
= lim

∆t→+∞

1
∆t

〈
et

â(∆τ)et
b̂(∆τ)

∫
∆τ

0
dτ1

∫
∆τ

0
dτ2

d p̂â

dτ1

d p̂b̂

dτ2

〉
. (2.7)

Note that ∆t and ∆τ should not be confused; they are related by

∆t =
∫

∆τ

0
dτ ut . (2.8)

The following provides three concrete applications to cases of interest, to illustrate the above
method.
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3. Applications

Here, I consider in turn the acceleration of particles through scattering in a magnetized wind
emitted by a compact object (Sec. 3.1), through scattering in the velocity field in the vicinity of a
black hole (Sec. 3.1), and finally through their stochastic interactions with velocity structures in a
magnetized turbulence (Sec. 3.3).

3.1 Stochastic unipolar induction

Consider a magnetized radial outflow characterized by its four-velocity
uµ(r,θ) = {ut(r,θ),ur(r,θ),0,0} in spherical coordinates, assumed to originate from some com-
pact object. The magnetic field is transverse to the flow, but neither its magnitude nor its strength
needs to be specified here. It suffices to assume that the particle has a finite mean free path cts in
this structure (ts representing the scattering time), and for the sake of simplicity, this mean free path
is assumed to be isotropic in the locally inertial frame. To compute Eqs. (2.6) and (2.7), one first
needs to express the connection. Its non-vanishing components are:

Γ̂
0̂
1̂0̂ =

ur ur
,r

ut , Γ̂
0̂
1̂1̂ = ur

,r, Γ̂
0̂
1̂2̂ =

ur
,θ

rut , Γ̂
0̂
2̂2̂ =

ur

r
, Γ̂

0̂
3̂3̂ =

ur

r
. (3.1)

In a rather straightforward way, one then derives〈
d p̂0̂

dτ

〉
= −1

3
p̂2

m
∇∇∇ ·uuu . (3.2)

Here, the meaning of the averages is to assume that the direction of the particle momentum in the
locally inertial frame is random. It can thus be seen as an average over the particle distribution
function over time scales much larger than the particle mean free path. It reproduces the correct
law of evolution for a fluid (corresponding to zero mean free path particles), describing cooling
(resp. heating) through expansion (resp. contraction).

Particles with a non-zero mean free path can explore the flow in different directions, and
therefore interact with electric fields of different directions and magnitudes, because of the non-
uniformity of u(x). Such particles can therefore gain energy in a stochastic way, as characterized
by the second order moment

∆
0̂0̂ =

∫
dτ1dτ2

{〈
d p̂0̂

dτ1

dp̂0̂

dτ2

〉
−

〈
d p̂0̂

dτ1

〉〈
d p̂0̂

dτ2

〉}
, (3.3)

which reads here

∆
0̂0̂ = 2∆̂t

p̂2t̂s
18r2

[
4ur2 +2(rur

,r)
2 +

ur
,θ

2

ut 2 + 6
(rur

,r)
2

ut 2

]
. (3.4)

As expected, this term vanishes for particles of zero mean free path. Given the flow geometry
uµ(x), and t̂s, one can solve the above equations to obtain the evolution of the particle distribution
function in a Fokker-Planck manner.

The terms that appear in these first and second-order moments in Eqs. (3.2) and (3.4) can
in principle be obtained from the transport equation for the particle distribution, which is itself
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derived in a perturbative manner from the Vlasov equation, at the price, however, or intensive
algebra, see [6, 7]. The regular, also termed adiabatic, term in Eq. (3.2), then emerges in front
of ∂ f/∂ p̂, while the second-order terms of Eq. (3.4) appear in front of ∂ 2 f/∂ p̂2, and corre-
spondingly characterize the stochastic energization terms. Such terms involve the shear tensor
σαβ = u(α;β )+ u(αuµuβ );µ − 1

3 uµ
;µhαβ , with the short-hand notation u(i, j) = (ui, j +u j,i)/2 and

hαβ = gαβ +uαuβ the metric of hypersurfaces orthogonal to uµ . They also involve the acceleration
term aαβ =−uβ uµuα;µ .

3.2 Acceleration in black hole environments

As a second example, consider a particle scattering in a magnetized turbulence in the vicinity
of a black hole. Doing so, the particle explores both the sheared velocity flow, but also the grav-
itational potential and both contribute to its energization. In principle, the particle can also gain
energy through its interaction with the turbulence, if the latter contains fast moving scattering cen-
ters, in the standard Fermi-II process. For the sake of simplicity, this source of scattering is ignored
here; it will, however, be considered in Sec. 4. Note that, as the velocity of the scattering centers,
e.g. the Alfvén velocity βA, drops to zero, the turbulence ceases to provide acceleration, but it still
contributes to scattering and transport.

For simplicity, I consider here the case of a circular orbit around a Schwarzschild black hole.
The metric is gµν = diag

{
− [1− rH/r] , [1− rH/r]−1 ,r2,r2 sin2

θ

}
, where rH = 2GM/c2 repre-

sents the horizon radius in terms of the black hole mass M. The circular orbit is described by
uµ = γu(r){1,0,0,Ω(r)}. Here, the laboratory frame is that in which the black hole lies at rest.
The angular momentum of the flow is `u = uφ/ut = r2 sin2

θ Ω/(1− rH/r).
To simplify the expressions that follow, consider the orbit on the equator. Then, the non-zero

time components of the connection are:

Γ̂
0̂
1̂0̂ =

r3rH−2`2
u(r− rH)

2

2r3/2√r− rH [r3− `2
u(r− rH)]

, Γ̂
0̂
1̂3̂ = − `u (2r−3rH)

2 [r3− `2
u(r− rH)]

, Γ̂
0̂
3̂1̂ = − `u (2r−3rH)

2 [r3− `2
u(r− rH)]

.

(3.5)
From this, one derives 〈

d p̂0̂

dτ

〉
= 0 , (3.6)

indicating that on average, the particle does not gain or lose energy along its circular orbit, as
expected. Here as well, the average is taken over the random orientation of the particle momentum
in the comoving frame. However, the second-order moment does not vanish, and it can be written
in the compact way:

∆
0̂0̂ = 2∆̂t

p̂2t̂s
3r2 [1+(1− rH/r)`2

u/r2]2

{[(
1− rH

r

)3/2 `2
u

r2 −
(

1− rH

r

)−1/2 rH

r

]2

+

√
2

6
r4

Ω
2
,r

}
.

(3.7)
This term involves three contribution: the first two, whose difference is squared, respectively cor-
respond to the centrifugal term ∝ `2

u and the gravitational potential, adding up to form the total
force potential acting on the particle, while the third describes the shear contribution. The above
expression reduces to that obtained in the flat spacetime limit (rH→ 0) in Ref. [8], up to a numerical
prefactor (the difference is tied to how one defines t̂s).
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To the author’s knowledge, the above expression has not been published before and it allows
to compute the heating/acceleration rate of an ensemble of particles orbiting a black hole on tight
orbits. Deriving it from a full general relativistic transport equation is a priori possible, albeit at the
price of cumbersome algebra. Finally, it should be noted that, as Eq. (3.4) previously, the present
derivation assumes t̂s � r, meaning that the particle scatters around its circular orbit, but remains
tied to it on average.

3.3 Stochastic acceleration in a magnetized turbulence

As a last application, consider the acceleration of particles in a magnetized turbulent bath. In
the traditional approach, the turbulence is described as a sum of plane waves and one relies on
quasilinear theory, adding up the random force contributions that the particle experiences along its
unperturbed trajectory along the large-scale magnetic field. Energy gain then results from wave-
particle gyro-resonant (or Landau-resonant) interactions [2]. However, whether one can actually
describe a turbulence as a bath of waves or not, and whether such resonances survive in modern
turbulence theories [9, 10], remains a subject of debate.

Meanwhile, particles can gain energy through nonresonant processes in a generic turbulence.
Consider for instance the term ∇∇∇ ·u that enters Eq. (3.2): there it provides net cooling because it
has a definite sign, while in a turbulent bath, a particle can encounter regions of either sign. One
may thus expect a null contribution on average, but a non-zero variance leading to diffusion in
momentum space. How the velocity pattern affects the particle momentum is entirely encoded in
Eq. (2.5) above.

Such nonresonant diffusion processes have been discussed in the subrelativistic limit, starting
with Refs. [11, 12], but not in the relativistic limit where they may play an important role in pro-
moting fast acceleration. The formalism is ideally suited to characterize such processes and their
influence. To simplify the discussion, one makes a number of simplifying assumptions:

1. The magnitude of the flow four-velocity is assumed uniform in time and space, i.e. ut
,α = 0,

but its direction in space is assumed to form a Gaussian random process, characterized by
the correlation time Ω−1 and length scale K−1.

2. The direction of the particle momentum also follows a random process, characterized by its
correlation time ts.

3. Isotropicity is implicitly assumed in the local comoving frame.

Each of these assumptions could be relaxed, of course.
The following omits the details of the calculations, which can be found in [5], but it provides

the main steps. One first decomposes the velocity field into its 3D expansion (θ ), acceleration (aaa),
shear (σi j) and vorticity (ωi j) components: θ = ∇∇∇ ·u, aaa = uuu,t , σi j = u(i, j)− 1

3 ηi j θ and ωi j = u[i, j].
Assuming that these quantities are not correlated one to another, correlation functions involving two
derivatives of the velocity field can be decomposed into the sum of the correlation functions of each
of these quantities, e.g.

〈
ui, j(x1)ui, j(x2)

〉
=

1
3
〈
θ

2〉 Cθ (x1; x2)+
〈
σ

2〉 Cσ (x1; x2)+
〈
ω

2〉 Cω (x1; x2) (3.8)

5
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where Cθ (x1; x2) represents the correlation function of θ (normalized to integral unity), and sim-
ilarly for the other terms. The above decomposition involves the fluctuation amplitudes

〈
σ2
〉
=〈

σ i jσi j
〉

and similarly for the other terms.
The calculation scheme is then the following:

1. one first expresses the connection in terms of the velocity field and its derivatives, then plugs
in Eq. (2.5) into and (2.6) and (2.7). The first order moment vanishes exactly, since 〈θ〉 = 0.

2. The expression for the second-order moment can be simplified, using Wick’s theorem to
break down the correlators of the random fields down to two-point functions.

In this way, one obtains to lowest order in u2, in the sub-relativistic limit, a simple, closed
formula: 〈

∆p2〉 = p2
∫

dt1dt2

{〈
θ

2〉 2
3
Cθ (t1, t2)Cp(t1, t2)2 +

〈
a2〉Ca(t1, t2)Cp(t1, t2)

+
2
5
〈
σ

2〉Cσ (t1, t2)Cp(t1, t2)2
}
. (3.9)

To simplify it further, consider the limit Ω→ 0 (corresponding to perturbations that never decor-
relate in time), and assume first the limit ts � K−1. The explicit integration of the above equation
then provides, to lowest order:〈

∆p2
〉

2∆t
=

√
2

3
p2 ts

(〈
θ

2〉 + 3
5
〈
σ

2〉 + 3√
2

〈
a2〉) (3.10)

which shows that the compressive, shear and acceleration components of the turbulence contribute
in about equal amounts to momentum diffusion. Given that 〈θ 2〉 ∼ K2〈u2〉compr., where 〈u2〉compr.

represents the four-velocity fluctuation power in compressible modes, and similarly for the other
quantities, Eq. (3.10) above suggests that the acceleration timescale takes the form:

tacc =
p2

〈∆p2/2∆t〉
∼ 1
〈u2〉

L2

ts
(3.11)

with L = K−1 the typical scale of the velocity flow, 〈u2〉 symbolizing the fluctuation amplitude as-
sociated to the combination of compressive, shear and acceleration motions indicated in Eq. (3.10).
Note also that the present calculation assumes a spectrum strongly peaked on a single scale; this
will be generalized to a more realistic spectrum further below. This acceleration timescale can be
interpreted as follows: it takes a time L2/ts for the particle to explore the coherence length of the
turbulence, while traveling in a diffusive manner (recall ts � L here), and thereby to experience a
decorrelated force that promotes diffusion in momentum space. For reference, in the Fermi model,
a particle interacting with structures moving at velocity 〈u2〉1/2 with interaction time tint gets ac-
celerated on a timescale tacc ∼ tint/〈u2〉. Here, therefore, tint ∼ L2/ts, in sharp contrast with the
predictions from quasilinear theory for resonant wave-particle interactions, which give tint ∼ ts.

In the opposite limit ts � K−1, one derives:〈
∆p2

〉
2∆t

=
4
π

p2 1
K2ts

(〈
θ

2〉 + 3
5
〈
σ

2〉 + 3
2
〈
a2〉) , (3.12)
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indicating that the acceleration timescale now reads tacc ∼ ts/〈u2〉. One thus recovers in this regime
tint ∼ ts, because the particle has already crossed many coherent lengths of the turbulence in a time
interval ts.

The above can be generalized to the ultra-relativistic regime. In this case, the evolution of the
momentum takes the following form:〈

∆p2〉 ∼ 〈p〉2 ∼ γ
4
u p2

0 e2∆t/tpp , (3.13)

with p0 = pt(0). The term γ4
u results from a first-order Fermi process that is associated with the

bulk motion of the turbulence in the laboratory frame. The term tpp represents the timescale for
acceleration through stochastic interactions with the turbulence. The expressions for tpp in the
limits ts � K−1 and ts � K−1 take forms similar to those above for tacc, except that the vorticity
now contributes as well. Explicitly:

tpp =
t−1
s

0.87〈θ 2〉 + 0.40 〈σ2〉 + 0.52 〈ω2〉 + 2.4 〈a2〉
(
ts � K−1)

tpp =
K2ts

1.9〈θ 2〉 + 0.94 〈σ2〉 + 0.90 〈ω2〉 + 7.3 〈a2〉
(
ts � K−1) . (3.14)

The above expressions have been derived under the assumption that the power spectrum of
the velocity fluctuations is sharply peaked around a single scale L = K−1. They may, however, be
generalized to the case of a broadband spectrum, as has been done in Ref. [13]. The idea is to
split the cascade into two regions, the small-scale part with k � ts, and the large-scale part with
k � ts, then to use the corresponding expressions derived above, for each. First, one decomposes
the four-velocity fluctuations as

〈δu2〉 =
∫

lnkmin

dlnk 〈|δuk|2〉k , (3.15)

with 〈|δuk|2〉k ∝ k1−qu , where qu represents the 1D power spectrum index of the velocity field, and
kmin the smallest wavenumber of the cascade (i.e., the inverse of the outer scale). Then, the various
contributions of compressive modes, acceleration, shear and vorticity on a scale k are written, e.g.
for the compressive part

〈θ 2〉k = αθ k2 〈|δuk|2〉k . (3.16)

For ease of notation and simplification, the various contributions of the compressive modes, shear
etc. are summed up in one global term written α k2 〈|δuk|2〉k, although it should be kept in mind
that the exact combination depends on the properties of the turbulence. The notation that follows
is thus schematic. Interestingly, both contributions from the large scale part of the cascade, above
ts, and from the small scale part, give similar contributions to 〈∆p2/2∆t〉, and one ends up with

〈∆p2〉
2∆t

∼ p2 (tskmin)
qu−2 〈δu2〉α kmin . (3.17)

The above relationship between the diffusion coefficient and the scattering timescale departs markedly
from the quasilinear prediction Dpp ∝ 1/ts. Furthermore, because |qu− 2| generically is a small
quantity, and because ts generally is a mild (increasing) function of the momentum, the above sug-
gests that Dpp ∼ p2kmin〈δu2〉, in a reasonable approximation. Interestingly, this scaling has been
observed in recent particle-in-cell simulations of relativistic turbulence [14, 15].
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4. Conclusions

This paper, given at the occasion of the HEPRO VII (High Energy Processes in Relativistic
Outflows) meeting (Barcelona, 2019), and based on [5], introduces a new formalism to describe
the acceleration of particles in highly conducting astrophysical plasmas. This description relies
on the observation that the electric field exactly vanishes in the instantaneous frame of rest of the
plasma, as a virtue of ideal Ohm’s law (infinite conductivity), so that, in that frame, the Lorentz
force only contributes to pitch angle scattering, not energization. If the velocity field is not uniform
throughout space, this frame is not inertial, hence the particle is subject to an effective gravity that
provides energy gains or losses. To characterize the physics of acceleration, one follows the journey
of the particle in phase space in mixed frames, tracking the particle position in a laboratory frame
and the momentum in the sequence of locally inertial frames (instantaneous frames of rest) that the
particle visits. This generalizes to an arbitrary flow pattern the well-known scheme of calculating
the energy gain through Lorentz boosts to and from the rest frame of a scattering center, which can
be used only in specific configurations, as diffusive shock acceleration for instance.

The present formalism, because it makes use of general covariance, can be applied to all flow
configurations in any geometry, i.e. sub- to ultra-relativistic, Cartesian or non-Cartesian geome-
tries, flat or curved spacetime. Three concrete examples have been presented here as applications:
stochastic acceleration in an expanding magnetized radial wind, gravito-centrifugo-shear acceler-
ation including strong-field effects in the vicinity of a black hole and, finally, non-resonant accel-
eration in a magnetized turbulence. Each represents an original calculation, because such evolved
configurations cannot be easily addressed with other formalisms for Fermi acceleration.

Acknowledgements: This work has been financially supported by the ANR-14-CE33-0019
MACH project.
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