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Active Galactic Nuclei (AGN) and their relativistic jets are believed to be potential sites of ultra-
high-energy (UHE) cosmic ray acceleration. This paper reviews basic observational findings as
well as requirements on source energetics, and then discusses the relevance of different accelera-
tion sites and mechanisms, such as black hole gap, shock in back-flows or jet shear acceleration.
When put in context, the result suggests that Fermi-type particle acceleration at trans-relativistic
shocks and/or in shearing, relativistic flows offers the most promising framework for UHECR pro-
duction in AGN. Truly deciphering the astrophysical sources of UHECRs, however, still needs
improved statistical information on arrival directions and source correlations.
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1. Introduction

The origin of the ultra-high-energy cosmic rays (UHECRs, E > 1018 eV = 1 EeV) is still not
resolved. While considered extragalactic in origin [1], the astrophysical sources are unknown. Pos-
sible candidates include Active Galactic Nuclei (AGN) and their relativistic jets, starburst galaxies,
gamma-ray bursts as well as cosmic (supercluster) shocks. The present paper focuses on the rele-
vance of the former, and highlights some of the recent developments in the field.
Experimentally, major progress has been achieved over the last couple of years by the Pierre Auger
(PA) and the Telescope Array (TA) collaborations, see e.g. refs. [2, 3] for recent reports. Both col-
laborations run hybrid instruments that are fully operational since 2008. The larger PA observatory
consists of 1660 surface and four fluorescence detectors, and is located in the southern hemisphere
(Mendoza, Argentina). The TA, on the other hand, consists of 507 surface and three fluorescence
detectors, and is located in the northern hemisphere (Utah, USA). The surface detectors measure
air shower particles on the ground, and are sensitive to its electromagnetic, muonic and hadronic
components, while the fluorescence detectors observe the longitudinal development of air showers
in the atmosphere by the light emitted during their passage.
In the following, basic experimental findings are briefly summarized. Helpful overviews of recent
results and progress can also be found in refs. [4, 5].

2. Basic Experimental Results

2.1 Energy Spectrum

A decent agreement between the TA and PA experiments is found up to E ∼ 4× 1019 eV,
once the data are adjusted for the uncertainty (10%) in absolute energy scale, see e.g. ref. [6] and
Fig. 1. The resultant cosmic-ray (CR) energy spectrum also reveals a pronounced steepening above
E ∼ 5× 1019 eV, that is compatible with a Greisen-Zatsepin-Kuzmin (GZK) cut-off. Differences
between experiments are seen, however, towards higher energies. It seems possible that these may
be caused by different instrumental systematics, and/or some true source difference (as the particle
mean free path increases, differences in the large-scale structure may no longer be negligible). The

Figure 1: Energy spectrum as measured by the PA and TA surface detectors (left), adjusted for uncertainties
in absolute energy scale (right). From ref. [6].
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observed spectrum implies a UHECR luminosity density (around 1019.5 eV) of lUHECR ∼ 6×1043

erg/(Mpc3 yr) [7].

2.2 Composition

Cosmic-ray particles entering the atmosphere induce hadronic showers by interacting with
atmospheric nuclei. The atmospheric depth of the shower maximum, Xmax [g/cm2], is sensitive
to the primary mass. In general, light particles penetrate deeper in the atmosphere and exhibit a
steeper lateral distribution compared to heavy nuclei. Comparison of TA and PA data suggests that
the composition becomes lighter between 1017.2 eV and 1018.3 eV, compatible with a transition
from galactic to extragalactic cosmic rays. Above E ∼ 1018.3 eV the composition seems to become
heavier again, as evident both, from the mean Xmax and its fluctuations σ(Xmax) measurements (see
Fig. 2), with a trend that protons are gradually replaced by helium, helium by nitrogen etc, an iron
contribution possibly emerging above 1019.4 eV, cf. ref. [8] for details.

Figure 2: Composition analysis based on the mean (left) and the standard deviation (right) of the distribution
of shower maximum as function of energy. The TA data have been corrected for detector effects and energy
uncertainty. From ref. [8].

2.3 Anisotropy on Intermediate Scale

A possible anisotropy in the arrival directions of UHECRs can offer important clues as to their
astrophysical origin. A recent TA analysis [9] of the anisotropy on intermediate angular scales
using TA and PA events above 5.7×1019 eV (smeared out on circles of 25◦) provides evidence for
a TA hot spot (at R.A. ∼ 144◦, dec ∼ 40◦) at a level of 5.2σ (local significance) and 3.4σ (global
significance), respectively (cf. also [10]). This TA hot spot lies approximately in the direction of
the Ursa Major/Virgo supercluster (d ∼ 18 Mpc). The PA data, on the other hand, also suggests the
existence of a PA "warm" spot (local significance 3.6σ ), that coincides with the direction to Cen A
(and the Centaurus supercluster at d ∼ 50 Mpc), see Fig. 3. Neither the TA nor the PA data shows
any sign of excess in the direction of Virgo.
Note that if the UHECR composition would indeed become heavier (Z ≥ 10), as suggested in
Sec. 2.2, the standard requirements on astrophysical accelerators become less dramatic. On the
other hand, since particle deflection in a regular magnetic fields scales with θ ∼ d/rg ∝ (Z/E), one
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Figure 3: Sky map (Hammer-Aitoff projection in equatorial coordinates) combining TA (109 events) and
PA (157 events) data with energy above 5.7×1019 eV. The data have oversampling with a 20◦ radius circle.
No energy corrections was applied. The thin gray line above and left of the TA (upper) "hot" spot is the
supergalactic plane. The PA data also suggest a (lower) "warm" spot. From ref. [9].

would then need to address why we do not observe a strong anisotropy associated with protons at
E/Z [11, 12, 13].

2.4 Correlations with Known Sources

The current PA analysis of the arrival direction of UHECRs above 20 EeV (∼ 5500 events)
appears to favour a correlation with starburst galaxies [14]: In particular, a starburst model that
attributes 9.7% of UHECRs(> 39 EeV) to nearby starburst galaxies (23 objects, including NGC
4945, NGC 253, M83, NGC 1068), and the remaining to isotropic background, is favoured at 4σ

over the hypothesis of isotropy, cf. also ref. [15] for update, but see also ref. [16] for a (negative)
TA test. In comparison, a model of nearby γ-bright AGN (17 objects, including Cen A, M87, Mkn
421, Mkn 501, but not Fornax A), which attributes ∼ 7% of the total flux (> 60 EeV) to them, is
(only) favoured against isotropy at ∼ 2.7σ . It has been suggested, however, that an incorporation
of Fornax A (at a distance ∼ 20 Mpc) could change this picture in favour of radio galaxies once
magnetic deflection is properly accounted for [17, 18]. The analysis is certainly further complicated
by the fact that the CR luminosity of individual AGN is not known. In the noted PA analysis [14],
the (Fermi-LAT) integral gamma-ray fluxes from 50 GeV to 2 TeV have been used as proxy for
the UHECR flux. In the AGN case, the observable UHECR flux is then dominated (75%) by the
core of Cen A. The limitations introduced by the chosen approach necessitate further studies, part
of which should include a basic treatment of magnetic deflection and the introduction of better flux
proxies. As things are, it is still too early to conclude about the astrophysical sources of UHECRs.

In general, since UHECRs in AGN are confined to magnetic fields, they may escape only
slowly from their sources. Since it seems likely that, e.g., Cen A and Fornax A have seen more
powerful jets in the past, capable of accelerating UHECRs (see below), UHECR particles could
still be escaping from their giant lobes. If this is the case, then their past activity aka source history
becomes relevant. For some exemplary, recent discussion of individual source associations the
reader is referred to refs. [19] (Cen A), [20] (Virgo A/M87), [21] (Cen B) and [17] (Fornax A),
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respectively.

3. Physics Constraints

In order for a source to be capable of accelerating UHECRs, the relevant particles need to be
confined within it. This introduces a general (Hillas) bound

E ≤ 1020 Z (B/1µG)(L/100 kpc) eV , (3.1)

given by the condition that the particle gyro-radius, rgyro, remains smaller than the characteristic
dimension L of the source. Similarly, assuming acceleration to be constrained by the motional
electric field~ε =−(~V/c)×~B, one obtains

E ≤ ZeεL = 1020 Z β (B/1µG)(L/100 kpc) eV , (3.2)

with β = V/c. Accordingly, UHECR acceleration generally requires fast speeds, strong magnetic
fields or large source volumes [22]. The requirements are significantly relaxed if the composition
at the highest energies would be heavy (Z ≥ 10). The above expressions, however, only provides
a necessary (and not itself sufficient) condition for UHECR acceleration, and also neglect possible
relativistic effects. Generalisations and improved constraints have been obtained by various con-
siderations, e.g. [23, 24, 25, 11]. In any case, the characteristic timescale for acceleration tacc has
to be smaller than the escape (τesc) and the radiative (τloss) loss timescale, respectively. Note that
since tacc depends on acceleration physics, and τesc, τloss on individual source physics, this also
implies that detailed ("multi-messenger") source studies become particularly interesting.
Considering shock-type particle acceleration in a relativistic outflow (of speed β =V/c and Lorentz
factor Γ), a generalized constraint [11] is obtained by requiring that in the local, co-moving frame
t ′acc < t ′dyn (with primed quantities referring to the co-moving frame). Expressing the acceleration
timescale in terms of the gyro-time, i.e. t ′acc = ηt ′gyro = ηE ′/(ZeB′c), η ≥ 1, and the dynami-
cal timescale as t ′dyn = d/(ΓV ) (with longitudinal length scale d), the maximum UHECR energy
becomes

E = ΓE ′ ≤ ZeB′d/(βη) . (3.3)

To allow for this, the magnetic luminosity of the source, LB = 2πr2Γ2u′BV (r the lateral half width,
u′B ≡ B′2/8π), has to be high enough. With B′ from eq. (3.3) and r ∼ θ jd (θ j the jet half opening
angle), one obtains LB ≥ θ 2

j Γ2η2E2β 3c/(2Z e)2, or

LB
>∼ 8×1044

θ
2
j Γ

2
η

2
β

3
(

E/Z
1020 eV

)2

erg/sec . (3.4)

For the commonly assumed θ j ∼ 1/Γ, this thus implies a lower limit (η = 1) on the required source
luminosity for steady relativistic (β ∼ 1) outflows of Lm

>∼ 8×1044([E/Z]/1020eV)2 erg/sec. Note
that for non-relativistic shocks, η ∼ (c/Vs)

2, so that Lm ∝ (c/Vs). The situation is again much
relaxed if a heavier composition prevails at the highest end. Note that while AGN can have fast
jets with maximum power reaching up to L j ∼ 1048ṁ(MBH/109 M�) erg/sec [26], the winds in
starburst galaxies usually only have LSBG ∼ 1042 erg/sec (along with low shock velocities ∼ 1000
km/s) [27, 17]. Taken as face value, this would disfavour starburst galaxies as promising UHECR
accelerators.
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4. UHECR Acceleration in AGN

UHECR acceleration in AGN may occur at various locations, close to the black hole, within
their jets, at hot spot shocks or in their large-scale lobes. In the following, three recent examples
will be briefly discussed.

4.1 Black Hole Vicinity

UHECR acceleration in the magnetospheres of rotating supermassive black holes has been
considered in a number of papers, see e.g. refs. [28, 29, 30, 31, 32]. The acceleration relies on
the occurrence of an electric field component parallel to the magnetic field in a charge-deficient
("gap") region close to the black hole, see also ref. [33] for a review. This could happen either at
the so-called null surface (across which the Goldreich-Julian charge density, required to screen the
field, changes sign) or at the stagnation surface (separating MHD in- and outflows), see Fig. 4.

Figure 4: Illustration of the possible locations of charge-deficient regions (gaps) in rotating black hole
magnetospheres where efficient UHECR acceleration may occur. The red line denotes the null surface
across which the required Goldreich-Julian charge density changes sign, while the blue line delineates the
stagnation surface from which stationary MHD flows start.

The maximum available voltage drop for a gap of width h is of the order of [26]

∆Φ =
1
c

ΩFr2
HBH

(
h
rg

)2

' 2×1021ṁ1/2M1/2
9

(
h
rg

)2

, (4.1)

assuming a magnetic field BH ' 2×105ṁ1/2M−1/2
9 G, with M9 = MBH/109M�, field line rotation

ΩF = ΩH/2 = c/4rg and gravitational radius rg = GM/c2. This would seem to suggest that in
massive (M9

>∼ 1), active (ṁ >∼ 10−3) sources, ultra-high energies Z e∆Φ∼ 1020Z eV might well be
achievable.
Under realistic conditions, however, energy losses due to curvature radiation are likely to introduce
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an upper limit [26]

γmax ' 1010 ṁ1/8

Z1/4 M3/8
9

(
h
rg

)1/4

(4.2)

for curvature radii of the order of the gravitational one. Note that this would imply a maximum
energy Emax which no longer scales linearly with Z. Moreover, unless the accretion rate is low
enough (usually, ṁ≤ 10−4), the ambient soft photon environment will facilitate efficient pair pro-
duction in the gap, leading to gap sizes h� rg, significantly reducing achievable particle energies
(eq. [4.1]). On the other hand, if accretion rates are too low (as in e.g. quiescent quasars), the
expected magnetic field strength (BH ∝ ṁ1/2) would be low as well.
When taken together, this would seem to make an efficient gap-type acceleration of protons to ener-
gies much beyond E ∼ 1018 eV problematic. We note that since efficient UHECR production in the
black hole magnetosphere is accompanied by curvature VHE emission, gamma-ray observations
may in principle allow a useful probe of UHECR acceleration, e.g. [28, 34].

4.2 Shear in large-scale Jets

The jets in AGN are likely to exhibit some internal jet stratification and velocity shearing, that
could be conducive to efficient cosmic-ray acceleration, see ref. [35] for review and discussion.
Prominent scenarios include Fermi-type particle acceleration in non-gradual (discontinuous), e.g.
refs. [36, 37, 38, 39], or gradual (continuous), e.g. refs. [40, 41, 42, 43, 44], velocity shear flows.

The former utilises that if the CR particle distribution would remain nearly isotropic near a
strong shear discontinuity, the mean fractional energy change for crossing and re-crossing (full cy-
cle) is given by 〈∆E/E〉 ' Γ2β 2 [40]. This suggests that the increase in particle energy could be
substantial for a velocity shear that is highly relativistic (Γ� 1, e.g. [38]), while for non-relativistic
speeds (Γ∼ 1) only the usual gain ∝ β 2 is obtained. For relativistic flow speeds (β ' 1), however,
the non-negligible anisotropy of the particle distribution has to be modelled and taken into account.
For repeated crossings, the principal effects of this is a reduction in efficiency, e.g. [36, 37].
Denoting by τ the mean cycle time (into and out of the shear), the mean acceleration timescale
might in general be expressed as tacc ' τ/〈∆E/E〉. Note that, depending on the considered tur-
bulence properties, τ might actually be dominated by the (diffusion) time a CR particle needs
to return to the jet shear [39]. A related application to the kiloparsec-scale jets of Fanaroff-
Riley (FR) I sources has been recently presented [39], see Fig. 5. The model assumes entrain-
ment and re-acceleration of Galactic cosmic rays in a mildly relativistic shear flow (β = 0.7).
The performed Monte Carlo simulations suggest that the escaping CRs can have quite hard spec-
tra (dN/dE ∝ E−a,a <∼ 1). Furthermore, a rather complex chemical compositions at UHECR is
achieved due to different injection at TeV-PeV energies (Einj,i = 15Zi TeV). This also allows to
accommodate the anisotropy constraints mentioned earlier (Sec. 2.3). The maximum energy ∝ Z is
limited by the jet size (tacc ∝ r j/c) and (via τ) dominated by the diffusion properties in the cocoon.
The results shown are sensitive to the chosen cocoon properties (i.e., cocoon size, turbulence scale)
and dependent on a thin velocity transition layer ∆r ∼ r j/100 (defining the required energy of the
injected galactic cosmic rays). Enlarging ∆r, for example, is likely to affect the outcome. Neverthe-
less, these simulations show that non-gradual shear acceleration in large-scale jets of FR I (and not
only FR II) could in principle play an important role in UHECR acceleration. Given an FR I num-
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Figure 5: Left: Sketch of the considered FR I model assuming a recycling of galactic cosmic rays by non-
gradual shear particle acceleration in a jet - (turbulent) cocoon system. Some fraction of galactic cosmic
rays is considered to be swept up ("injected") and reaccelerated to ultra-high energies. The return probability
(and thus the cycle time) of a particle is dominated by the scattering (turbulence) properties in the cocoon.
Right: Reconstruction of the observed UHECR spectrum assuming a mildly relativistic (β ' 0.7) jet of
width r j = 0.5 kpc surrounded by a thin velocity transition layer ∆r = 5 pc (B j = 0.3mG). The chemical
composition at the highest energies is dominated by intermediate and heavy nuclei. From ref. [39].

ber density of nFRI ∼ 10−5− 10−4 Mpc−3, an average source luminosity L ∼ 2× 1040− 2× 1041

erg/sec would be needed, cf. Sec. 2.1.
If the transition layer becomes larger, particle scattering will occur within the shear layer,

facilitating gradual shear particle acceleration within it, see e.g. refs. [40, 41, 42, 43, 44]. The
underlying mechanism can be viewed as a stochastic, second-order Fermi-type particle acceleration
process, where the usual scattering center speed is replaced by an effective velocity ū determined
by the shear flow profile, e.g., ū = (∂uz/∂ r)λ in the case of a simple continuous (non-relativistic)
velocity shear ~u = uz(r)~ez, cf. ref. [35] for a recent review. Accordingly, the fractional energy
change scales as

〈∆E/E〉 ∝

(
ū
c

)2

∝

(
∂uz

∂ r

)2

λ
2 . (4.3)

This suggests a scaling for the characteristic acceleration timescale of tacc ' τ/〈∆E/E〉 ∝ 1/λ ,
which, in contrast to classical first-order Fermi (shock) as well as non-gradual shear acceleration,
is inversely proportional to the particle mean free path λ = cτ . This seemingly unusual behaviour
relates to the fact that as a particle increases its energy (E ' pc), and thereby its mean free path
(typically, λ (p) ∝ pα ,α > 0), a higher effective velocity ū is experienced.
Gradual shear particle acceleration is particularly interesting as it could offer an explanation for the
origin of the extended synchrotron X-ray emission in large-scale AGN jets that requires the main-
tenance of ultra-relativistic electrons (γe ∼ 108) on kpc-scales [42]. Efficient operation generally
requires sufficiently relativistic flow speeds, i.e. fast jets (bulk Lorentz factors of some few) or a
strong jet–back-flow system [43, 44, 35].
To assess its potential for UHECR acceleration, cf. Sec. 3, the properties of a source need to be
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such as to allow (i) CRs to be confined within its jet, and to enable CR acceleration (ii) to proceed
faster than radiative losses (tacc < tsyn) and (iii) to operate within the lifetime (tdyn) of the system. A
related application following ref. [42] is shown in Fig. 6 assuming a linearly decreasing flow pro-
file with Γ = 2 on the jet axis. A jet-width to length ratio ∆r/d = 0.02 has been employed. These
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Figure 6: Permitted (hatched) parameter range (magnetic field strength B, shear layer width ∆r) to allow
gradual shear acceleration of protons to ∼ 1018 eV and to satisfy confinement and synchrotron loss con-
straints. A Kolmogorov-type scaling for the particle mean free path (q = 2−α = 5/3) has been assumed.
The required conditions for UHE proton acceleration might be met in the large-scale jets of AGN.

results suggest that proton energies ∼ 1018 eV are in principle achievable for relatively plausible
parameters (e.g., jet lengths 10 kpc -1 Mpc, magnetic fields B ∼ [1− 100] µG). Higher energies
might be obtained for faster flows or heavier particles [42, 43, 44].

4.3 Multiple shocks in back-flows

Following the considerations in Sec. 3 and eq. (3.2), high speeds are seemingly conducive for
efficient UHECR acceleration. While highly relativistic shocks might thus appear most promising,
closer studies however reveal them to be problematic instead, see e.g. refs [45, 46, 47]. This is
partly related to the fact that highly relativistic shocks are generically perpendicular (with down-
stream magnetic field quasi perpendicular to the shock normal, preventing particle from diffusing
back upstream) and that particle isotropization upstream is no longer guaranteed (there being not
sufficient time to growth turbulence on scales rgyro,UHECR). The situation is relaxed for mildly rela-
tivistic shock speeds, and this has led to the recent proposal that UHECR particle acceleration may
instead occur at multiple (mildly relativistic) shocks in the back-flows of radio galaxies [48]. Mul-
tiple shocks would provide multiple opportunities for acceleration, and also lead to harder spectra.
The proposal is motivated by two- and three-dimensional hydrodynamical simulations of light
(density contrast ρ j/ρ0 ∼ 10−5−10−4), high-power (∼ 1045 erg/sec) jets in cluster environments,
in which strong back-flows are seen (cf. also [49, 50]), that can be supersonic and exhibit re-
lated compression structures, cf. Fig. 7. Analysis of the simulation data suggests that about 10%
of the particles pass through a shock of Mach number M > 3, while ∼ 5% pass through mul-
tiple shocks. Inferred shock speeds are of the order of us ∼ 0.2 c, with estimated sizes R ∼ 2
kpc. Assuming a reference magnetic field strength of B ∼ 100 µG, maximum CR energies of
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Figure 7: Cartoon of the considered scenario, where multiple (mildly relativistic) shocks in strong back-
flows provide sites for efficient CR acceleration to UHE energies. From ref. [18].

Emax ' 4× 1019Z (B/10−4G) (R/2kpc) eV, see eq. (3.2), could thus be achievable. While ra-
dio galaxies can in principle be powerful enough to satisfy the minimum power requirement Lm,
eq. (3.4), this is currently barely the case within the GZK horizon. As CR are likely to escape
slowly from a source, however, the past activity of a source would be relevant (see above). There
are good reasons, for example, to consider an enhanced activity in the past driving the giant lobe
evolution in Cen A. In the present context these lobes may then represent reservoirs of UHECRs.

5. Conclusion and Perspectives

Current correlation studies provide some indications that both starburst galaxies and AGN
could play a significant role in the production of UHECRs. From a physical (acceleration) point
of view, starburst galaxies are less promising, while radio galaxies appear capable of satisfying the
relevant efficiency requirements. In particular, Fermi-type particle acceleration at trans-relativistic
(internal) shocks and/or in shearing, relativistic jet flows could facilitate the production of UHE-
CRs in jetted AGNs. This could be compatible with recent findings suggesting an increased (∼ 4σ )
excess of UHECR (E > 39 eV) events around Cen A. Further experimental constraints on the chem-
ical composition as well as more complex (and physically motivated) correlation studies will help
to eventually conclude about the astrophysical sources of UHECRs.
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