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A solution is obtained for the Boltzmann equation for a plasma in a magnetic field with strongly
degenerate electrons and non-degenerate nuclei. In the Lorentz approximation, the components of
the diffusion, thermal diffusion, and diffusion thermoeffect tensors in a non-quantizing magnetic
field are calculated. This approximation, in which electron-electron collisions are neglected, is
asymptotically accurate for a plasma with highly degenerate electrons. These formulas have
a much more complex dependence on the magnetic field than similar dependences in previous
publications on this topic.
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1. Introduction

Heat fluxes and current densities in the crusts of neutron stars and cores of white dwarfs are
determined by the coefficients of thermal conductivity, diffusion thermal effect, diffusion and ther-
mal diffusion. To calculate them, it is necessary to know the transport properties of the dense
matter of the stars, where the electrons are highly degenerate and form an almost ideal Fermi gas,
and the ions are non-degenerate and form either a Coulomb liquid or a Coulomb crystal. Under
these conditions, electrons, as a rule, are the most important carriers of charge and heat, and kinetic
coefficients are determined mainly by the scattering of electrons by ions. Knowing the distribu-
tion of heat and current, one can calculate the magnetothermal evolution of neutron stars whose
crusts form a Coulomb crystal [1]. A magnetic field limits the movement of electrons in a direction
perpendicular to its lines. Since electrons are the main carriers of heat and charge, the transfer of
heat and charge in this direction is suppressed, remaining unchanged along the lines. The relation
between the electrical conductivity along and across the lines of the magnetic field was obtained
phenomenologically in [2] in the form

σ⊥
σ‖

=
1

1+(ωτ)2 , (1.1)

and was used in [3] to calculate the kinetic coefficients of a degenerate electron gas in the crusts of
neutron stars. Here ω = eB

mec is the cyclotron frequency of electrons, τ is the time between electron
collisions, e, me, B, c is the electron charge and mass , magnetic field strength and speed of light,
respectively. The influence of the magnetic field on the thermal and electroconductivity in the form
of (1.1) was used in many subsequent papers. In this contribution, the tensor coefficients of diffu-
sion, thermal diffusion, and diffusion thermoeffect for highly degenerate electrons in the Lorentz
approximation are presented. For the first time, asymptotically accurate analytical expressions for
these kinetic coefficients in the presence of a magnetic field are obtained. These expressions are
much more complicated depending on the magnetic field than in previous works on this topic. The
use of kinetic coefficients calculated in this article will make it possible to more accurately take
into account the processes occurring in the crust of a neutron star. The obtained expressions can
be used to describe the transfer coefficients in other magnetized objects containing free degenerate
electrons.

2. Boltzmann equation and conditions of applicability

The Boltzmann equation, that describes the change in the distribution function of electrons f
over time, in the presence of electric and magnetic fields, is written as [4], [5]

∂ f
∂ t

+ ci
∂ f
∂ ri
− [

e
me

(Ei +
1
c

εiklckBl)]
∂ f
∂ci

+ J = 0. (2.1)

Here (−e),me is the charge (negative) and mass of the electron, Ei,Bi — electric field
strength and magnetic induction, εikl completely antisymmetric Levi-Civita tensor, c — speed of
light. The electron distribution is determined by the Fermi-Dirac function.
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The collision integral J for arbitrary electron degeneracy, according to [6, 7, 8, 9], is written in
the form:

J = Jee + JeN = R
∫
[ f
′
f
′
1(1− f )(1− f1)− f f1(1− f

′
)(1− f

′
1)]×geebdbdεdc1i + (2.2)

+
∫
[ f
′
f
′
N(1− f )− f fN(1− f

′
)]×geNbdbdεdcNi.

Here, the impact parameter b, and ε are geometrical parameters of particle collisions with relative
velocities gee,geN ,R = 2m3

e
h3 . The integration in electron part of the collision integral in (2.2) is

performed over the phase space of the incoming particles (dc1i), and the physical space of their
arrival (bdbdε) [8].

The Boltzmann equation for electrons with the pair collision integral (2.2) can be used when
electronic gas is considered almost perfect, i.e. the kinetic energy of electrons is much greater
than energy of electrostatic interactions. This is true for a plasma of sufficiently low density. On
the contrary in neutron stars and white dwarfs: the plasma has a very high density, at which it is
important to take into account the degeneracy of electrons. It is known from statistical physics that
a gas of highly degenerate electrons becomes ideal, since large Fermi energies in this case replace
thermal energy [10]. Therefore, the calculations in this paper are valid for a low-density plasma,
as well as for a plasma with a high density and degenerate electrons. A detailed discussion of
the applicability of the pair collision integral (2.2) and its modifications for non-degenerate high-
density gases can be found in [8].

The collision integral similar to Jee from (2.2) for strongly degenerate neutrons in nuclear
matter is given in [9], see also [11]. In the presence of non-degenerate heavy nuclei and highly
degenerate neutrons, the contribution of collisions between them to the heat transfer and diffusion
coefficients is negligible compared to neutron-nucleus collisions. The same situation holds for
highly degenerate electrons. Therefore, for strongly degenerate electrons, the Lorentz approxima-
tion, taking into account collisions between light and heavy particles, is asymptotically accurate.
Therefore, for our consideration, we can neglect Jee compared to JeN , and we can equate J = JeN in
(2.2).

The transfer equations for the electron concentration, total momentum, and electron energy,
in the two-component mixture of electrons and nuclei, can be obtained in a usual manner from the
Boltzmann equation in a quasi-neutral plasma [8, 4, 5].

3. Solution method

The Boltzmann equation can be solved by using the Chapman-Enskog method of successive
approximations [8]. This method is used when the distribution functions are close to their values
in the state of thermodynamic equilibrium, and deviations are considered in a linear approximation.
In a first approximation, we look for the distribution function f in the form f = f0[1+χ(1− f0)]

The χ function allows the solution to be represented as [13]:

χ =−Ai
∂ lnT

∂ ri
−neDidi

G5/2

G3/2
, (3.1)

where diffusion vector di:
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di =
ρN

ρ

∂ lnPe

∂ ri
− ρe

Pe

1
ρ

∂PN

∂ ri
+

ene

Pe
(Ei +

1
c

εiklc0kBl). (3.2)

The functions Ai and Di determine the heat flux and diffusion. At [4, 5] it is shown that in the
presence of a magnetic field with an axial vector Bi, the polar vectors Ai Di can be searched for in
the form:

Ai = A(1)vi +A(2)
εi jkv jBk +A(3)Bi(v jB j), Di = D(1)vi +D(2)

εi jkv jBk +D(3)Bi(v jB j), (3.3)

Introducing functions ξA = A(1)+ iBA(2), ξD = D(1)+ iBD(2) and dimensionless velocity: ui =√ me
2kT vi, we will get, omitting small terms on the order of ∼ me

mN
, the equations for ξA and ξD:

f0(1− f0)(u2−
5G5/2

2G3/2
)ui =−iB f0(1− f0)

eξA

mec
ui + IeN(ξAuNi), (3.4)

f0(1− f0)ui =−iB f0(1− f0)
eξD

mec
ui + IeN(ξDuNi), (3.5)

where

IeN(ξ uNi) =
∫

f0 fN0(1− f
′
0)(ξ ui−ξ

′
u
′
i)geNbdbdεdcNi. (3.6)

4. Coefficients of thermal diffusion, diffusion, and diffusion thermoeffect of
degenerate electrons in a magnetic field

The general relations for the heat flux qi and the average directional (diffusion) electron veloc-
ity 〈vi〉 are written as

qi =−λi j
∂T
∂x j
−ne

G5/2

G3/2
νi jd j = q(A)i +q(D)

i , (4.1)

〈vi〉=−µi j
∂T
∂x j
−ne

G5/2

G3/2
ηi jd j = 〈v(A)i 〉+ 〈v

(D)
i 〉, (4.2)

where λi j and νi j are the tensors of thermal conductivity and diffusion thermal effect, and µi j

and ηi j are the thermal diffusion and diffusion tensors, respectively [11], [12]. The indices (A) and
(D) determine the heat fluxes and diffusion velocities of electrons, determined by the temperature
gradient ∂T

∂x j
, and the diffusion vector d j , respectively.

The method for calculating the coefficients of the thermal conductivity tensor λi j is described
in detail in [13], where analytical expressions are obtained for them. Similarly, detailed description
of calculating the coefficients of the tensors µi j, νi j and ηi j, can be found in [14].

The frequency of electron-ion collisions νei was expressed in [15] and in the limiting case for
degenerate matter can be written as

νei =
32π2

3
me

Z2e4ΛnN

h3ne
(D) τd = 1/νd . (4.3)

The obtained results of calculations, for the components of thermal diffusion tensor:
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µ
(1) =

4π3

3
k2T
neh2

(
3ne

π

)1/3

τd

 1
1+ω2τ2

d
−

2ω2τ2
d

(1+ω2τ2
d )

2 −
π2

6

 1

1+ω2τ2
d

y3

x3
0

′′ |y=x0

 , (4.4)

µ
(2) =−4π3

3
k2T
neh2

(
3ne

π

)1/3
ωτ2

d
B

 2
1+ω2τ2

d
−

2ω2τ2
d

(1+ω2τ2
d )

2 −
π2

6

 1

1+ω2τ2
d

y3

x3
0

′′ |y=x0

 ,(4.5)

B2
µ
(3) = µ

(1)(B = 0)−µ
(1). (4.6)

Dependence of µ⊥/µ‖ from ωτd for comparison with the results of previous studies on this matter
is plotted on the Fig.1 on the left.

Components of the diffusion tensor:

η
(1) =

kT
neme

τd

(
1

1+ω2τ2
d
+

π2

6

(
1

1+ω2τ2
d (y

3/x3
0)

)”

|x=x0

)
, (4.7)

η
(2) =− kT

neme

ωτ2
d

B

(
1

1+ω2τ2
d
+

π2

6

(
1

1+ω2τ2
d (y

3/x3
0)

)”

|x=x0

)
, (4.8)

B2
η
(3) = η

(1)(B = 0)−η
(1). (4.9)

Components of the diffusion thermal effect tensor:

ν
(1) =

kT h2

8m2
e

(
3ne

π

)2/3

τd

(
1

1+ω2τ2
d
+

π2

6

(
1

1+ω2τ2
d (y

3/x3
0)

)”

|x=x0

)
, (4.10)

ν
(2) =−kT h2

8m2
e

(
3ne

π

)2/3
ωτ2

d
B

(
1

1+ω2τ2
d
+

π2

6

(
1

1+ω2τ2
d (y

3/x3
0)

)”

|x=x0

)
, (4.11)

B2
ν
(3) = ν

(1)(B = 0)−ν
(1). (4.12)

Here x0 = µ/kT is rate of degeneracy, µ is the chemical potential of electrons , and y = u2 is
squared dimentionless velocity.

The dependences of ν⊥/ν‖ and η⊥/η‖ from ωτd are plotted on the Fig. 1 and 2.
If the exact solution (for diffusion and diffusional thermal effect) takes into account terms of

the order of 1/x2
0 small, then the solution obtained from the Boltzmann equation will differ from

the phenomenological (1.1).
For completeness, we give the expressions for the coefficients of the tensor λi j in a strongly

degenerate plasma from [13]
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λ
(1) =

5π2

6
k2T ne

me
τd

 1
1+ω2τ2

d
− 6

5
ω2τ2

d

(1+ω2τ2
d )

2 −
π2

10

 1

1+ω2τ2
d

(
y3

x3
0

)
′′ |x=x0

 , (4.13)

λ
(2) =−4π2

3
k2T ne

me

τ2
d ω

B

 1
1+ω2τ2

d
− 3

4
ω2τ2

d

(1+ω2τ2
d )

2 −
π2

16

 1

1+ω2τ2
d

(
y3

x3
0

)
′′ |x=x0

 , (4.14)

B2
λ
(3) = λ

(1)(B = 0)−λ
(1). (4.15)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2

µ
⊥

 /
µ

||

ωτ

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2

η
⊥

 /
η

||

ωτ

Figure 1: The left figure is the ratio µ⊥/µ‖ as a function of ωτ . For comparison, the curves representing
the phenomenologically determined thermal diffusion coefficient (solid curve) and that obtained from the
asymptotic solution to the Boltzmann equation (dashed curve) are shown. The right figure is the ratio η⊥/η‖
as a function of ωτ . For diffusion, the phenomenologically obtained solid curve coincides with the curve
obtained by solving the Boltzmann equation in the case of strong degeneracy. If terms on the order of
smanless of 1/x2

0 are retained in the exact solution, then the solution obtained from the Boltzmann equation
differs from the phenomenological one given by (1.1). The dash-dotted and dashed curves correspond to the
solutions obtained with the allowance for small terms at kT = 0.11E f (x0 = 9) and kT = 0.2E f (x0 = 5)
respectively.

5. Conclusion

In our work, we find the tensors of kinetic coefficients of diffusion, thermal diffusion, and
diffusion thermoeffect for highly degenerate nonrelativistic electrons in a non-quantizing magnetic
field. The solution was obtained asymptotically precisely in the Lorentz approximation, when
electron-electron collisions can be neglected in comparison with electron-nucleus collisions. The
tensors are obtained for arbitrary directions of the magnetic field and temperature gradient in the
Cartesian coordinate system, according to [4]. In most works dealing with kinetic coefficients
in astrophysical objects, in particular, thermal conductivity and electrical conductivity in neutron
stars, the influence of the magnetic field was taken into account phenomenologically using the co-
efficient 1/(1+ω2τ2), which reduces heat flux and diffusion in the direction perpendicular to the
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Figure 2: The left figure is ratio λ⊥/λ‖ as a function of ωτ . For comparison, the curves representing the
phenomenologically determined thermal conductivity (solid curve) and the asymptotic thermal conductivity
obtained by solving the Boltzmann equation (dashed curve) are shown. The right figure is ratio ν⊥/ν‖ as a
function of ωτ . Similar to diffusion, the phenomenologically obtained solid curve coinsides with the asymp-
totic solution for the diffusion thermoeffect. If terms on the order of smalness of 1/x2

0 are retained in the
solution obtained from the Boltzmann equation, then the plot of ν⊥/ν‖ differs from the phenomenological
curve. The dash-dotted and dashed curves correspond to the solutions obtained at kT = 0.11E f (x0 = 9)
and kT = 0.2E f (x0 = 5), respectively.

direction of the magnetic field [2], [3]. Our results obtained by solving the Boltzmann equa-
tion show that the influence of the magnetic field on the kinetic coefficients is stronger and has a
more complex character. Calculations were made for nonrelativistic electrons, although relativistic
effects become important in the deep layers of the neutron star’s crust.

Electrical conductivity of relativistic degenerate electron gas in intense magnetic field was
considered by Canuto [16, 17].

The main relativistic effect of an increase in the effective electron mass can be approximately
taken into account by replacing, in all expressions, the rest mass of the electron me with the rela-
tivistic mass of the electron me∗ = (m2

e + p2
Fe/c2)1/2 [3]. The diffusion vector, which determines

the electric current in a medium with gradients of various parameters and a nonzero electric field,
is important for calculating the geometry and evolution of the magnetic field in degenerate stars.
The obtained kinetic coefficients can be used to calculate the fluxes of heat and electric current in
white dwarfs, on the surface and in the crust of neutron stars, as well as in a magnetized plasma
incident on a neutron star.
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