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Are jets in GRS 1758−258 precessing?
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The large-scale morphology of the radio jets in microquasar GRS 1758-258 has been changing in
the last decades. Available radio maps show hints of apparent precession. Here, we fit data with
a simple kinematical model and perform an analysis of the possible origins and implications of
precession in this system. From our study, that includes an additional observing epoch, we are
able to confirm the previous detection of changes in the radio jets of GRS 1758-258 far from the
core. However, we tentatively suggest that these changes are more probably due to instabilities
instead of jet precession.
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1. Introduction

In the early nineties the GRANAT/SIGMA satellite discovered one of the strongest hard X-ray
sources in Universe [1]. It was placed close to the direction of the center of the Galaxy. Named
as GRS 1758–258, its relevance made it worthy to be extensively studied in all wavelengths. The
X-ray variability and spectrum suggested it to be a binary with a ∼ 10 M� black hole as a compact
companion [2, 3]. An orbital period of 18.45± 0.10 days have been proposed based on Rossi X-
ray Timing Explorer (RXTE) lightcurve [4], which pointed to a KIV type donor companion. Soon,
GRS 1758–258 was considered as a prototypical microquasar when a pair of relativistic, bipolar jets
were detected at radio frequencies, with two remarkable lobes spanning a projected distance of 2.5
arcmin [5, 6]. However, the optical/infrared counterpart remained elusive for decades because of
the high extinction, the crowded field and some astrometric uncertainties [7, 8, 9, 10, 11]. Finally, a
clear candidate was proposed [12, 13, 14], which seems to be compatible with an A5V star orbiting
the black hole in less than a day, clearly in contradiction with the commonly accepted companion
spectral type and orbital period. Unfortunately, this counterpart is so difficult to observe that no
clear spectrum has been obtained up to now. Therefore, much of the true nature of the GRS 1758–
258 system is still unknown.

Nevertheless, changes in the large-scale morphology of the GRS 1758–258 radio jets have
been noticed recently [13]. This definitively proved the Galactic origin of the system, and posed
a new quasar/microquasar analogy in the cocoon features due to the interaction between the jets
and the interestellar medium. The Z-shaped observed morphology in such cocoon for GRS 1758–
258 was intriguing because it seemed to mimic winged radiogalaxies. This new link between
microquasars and their extragalactic relatives has been proposed and reported in detail no long
ago [15], with some consequences in the black hole merger rate for extragalactic sources and their
corresponding gravitational wave production.

2. Precessing model for GRS 1758–258 relativistic jets

The morphological changes observed in the large-scale radio jets of GRS 1758–258 were ini-
tially attributed to the growth of Kelvin-Helmholtz (KH) and/or Rayleigh-Taylor (RT) instabilities
[13]. However, the evolution seen on the shape of the radio outflow along time seem to follow heli-
cal paths typical of precessing jets, such as those in SS 433. In order to explore this possibility, we
decided to add a new radio map to the existing ones in the databases and ask for observation time
to the Very Large Array (VLA) in C- configuration. A new observing run was finally conducted
in 2016 at the 6 cm wavelength (Project ID. 16A-005, on-source time 7659 s), with an increased
sensitivity with respect to the historical data thanks to the GHz bandwidth available after the last
VLA upgrade. Calibration and imaging were performed taking care of producing a comparable
map with the preceding ones, following the methodology we usually adopt (see [16]). The final
complete set of radio maps is presented in Fig. 1 together with the result of a simultaneous fit using
the well-known kinematic model of Hjellming & Johnston [17] with the same set of parameters
for all the maps. This is shown in Table 1. As may be seen, the modeled jet paths seem to be
compatible with the observed radio emission. Therefore, the possibility for the jet morphological
evolution to be due to precession must be considered and discussed.
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Figure 1: Attempt to fit the large-scale radio jets of GRS 1758–258 jets at different epochs using a theoretical
kinematic model [17]. Horizontal bar shows the scale size, and the synthesized beam is on the left-down
corner. North is up and East is left.

Table 1: Twin-jet kinematic model for GRS 1758–258 radio jets(*)
Parameter Value
Angle of the precession cone ψ = 1.4◦

Inclination of the jet precession i = 34◦

axis with the l.o.s.
Inclination of jet normal axis to North χ = 281◦

(posit. angle = 11◦)
Approaching jet (N) sjet =+1
Receding jet (S) sjet =−1
Sense of rotation (clockwise) srot =−1
Precession period Pp = 1099 d
Jet velocity vjet = 0.67c
Distance d = 8.5 kpc

(*) Adapted from 1981ApJ...246L.141H.

3. Possible mechanisms for precession: misalignment of black hole rotation axis
with respect to orbital angular momentum

Assuming jets in GRS 1758–258 are launched via the Blandford-Znajek mechanism [18], they
will lay along the black hole rotation axis via Bardeen-Petterson effect or magneto-spin alignment
[19]. Thus, for precession to take place, a misalignment of this axis with respect to the orbital
angular momentum must be persistent along time. However, both axes try to realign in a time scale
of [20]:

τalign [yr] = 1.0×107a11/16
(

α

0.03

)13/8
(

L
0.3LEdd

)−7/8( M•
10M�

)−1/16

×
(

ε

0.3

)7/8
(

tr
to

)
, (3.1)

where a is the dimensionless spin parameter for the black hole, α is the viscosity parameter [21], L
is the luminosity of the accretion flow, LEdd is the Eddington luminosity for the central black hole,
tr and to are the recurrence and outburst time-scales of the central source, respectively, and ε is the
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radiative efficiency of the accretion flow. This last parameter is related to a according to [22] :

ε = 1− 1−2ξ−1
ms +aξ

−3/2
ms√

1−3ξ
−1
ms +2aξ

−3/2
ms

. (3.2)

Here, ξms ≡ Rms/Rg, with Rms being the marginally-stable-orbit radius, and Rg = GM•/c2 the grav-
itational radius of the black hole. This is in turn related to a as ξms = 3+A2∓ [(3−A1)(3+A1 +

2A2)]
1/2 (upper sign for prograde rotation), with A1 = 1+(1−a2)1/3[(1+a)1/3 +(1−a)1/3] and

A2 = (3a2 +A2
1)

1/2 [23].
On the other hand, the age of the binary system (identified as the timescale to accrete the entire

donor star, which is an upper bound for the lifetime of the Roche lobe overflow of the binary) is of
the order of [20]:

τbin [yr] = 1.3×108q
(

ε

0.3

)( L
LEdd

)−1( tr
to

)
, (3.3)

where q is the mass ratio Mdonor/M•. Here, we will assume that GRS 1758–258 has Mdonor ∼ 2
M� (typical of a A5V star) and M• ∼ 10 M�, while L ∼ 0.03LEdd [3] and a ∼ 0.1 (typical for
a radio-quiet source [24]). This gives ε = 0.06, and using a typical α ∼ 0.01 value, we obtain
τalign/τbin ∼ 10−1. Even taking into account that the donor star lifetime τ∗ ∼ 2× 1010 years [25]
could be one order of magnitude less than τbin, the alignment timescale is of the order of the system
life. As, in addition, τalign is greater than the jet travel time τ j . 105 years [15], the black hole spin
axis in GRS 1758–258 could be misaligned with the orbital orbital momentum, as usual in X-ray
binaries with black holes [20], giving rise to precession.

4. Possible mechanisms for precession: Bardeen-Petterson

If jets are launched by Blandford & Payne [26] mechanism, they will be always perpendicular
to the accretion disc plane no matter the spin of the black hole. Thus, misalignment of the jets
causing precession may be due to a very different mechanism: the Bardeen-Petterson effect [23].
Here, a local warping of the inner part of the disc forces it to stay perpendicular to the black hole
spin axis in its proximity if viscosity is high enough. This may be quantified through the viscous
and precession timescales that may be expressed as τν = r2ν2(r)−1 and τp = πc3r3a−1G−2M−2

• ,
respectively, with ν2(r) being the kinematic viscosity in transverse direction, and G the gravity
constant. If τp/τν . 1 at the inner edge of the accretion disc the Bardeen-Petterson precession
may take place [27]. We can assume the inner radius of the disc at r ∼ Rms, and that ν2 is of the
order of the radial viscosity, which may be parametrized in terms of the local sound speed [21],
which in turn depends on the disc scale heigh H. Taking into account the values yet adopted for
GRS 1758–258 we can write:

τp

τν

= 10−1
(

α

0.05

)( a
0.1

)−1
(

r
Rms

)3/2(H/r
0.1

)2

, (4.1)

where we have assumed a very conservative estimate for H/r at the inner border of the disc, despite
which the Bardeen-Petterson precession could be taken place in GRS 1758–258.
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5. Possible mechanisms for precession: tidal torque

A third mechanism could explain the precession of jets in GRS 1758–258 if orbital and accre-
tion disc planes were misaligned in a Blandford-Payne launching jet scenario. Torques thus arising
may cause the bipolar jets to precess [28, 29, 30, 31, 32]. This mechanism has been proposed for
X-ray binaries, and it could be very well at work for the case of GRS 1758–258.
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Figure 2: The precession period for GRS 1758–258 as a function of the spin parameter. The outer non-
dimensional radius of the disc is taken to be ξout = 1000ξms. Different lines correspond to the different
power-law slopes of the disc surface density (red, continuous for s = 0; blue, dashed for s =−1 and black,
dotted for s = −2). The gray, dotted horizontal line marks the here estimated period of precession of ap-
proximately 3 yr, while the magenta, dotted line marks the 18.48 days precession period proposed in [14],
both in the comoving frame of the source.

6. Proposed scenario: precession and instabilities

It is clear that precession may be taking place in our system. The three mechanisms here
discussed are consistent with such a possibility. However, is precession at GRS 1758–258 actually
responsible for its observed radio-jets evolution? If so, the precession period should be of the order
of the one obtained in our fit (see Table 1), which is of about 3 years. Therefore, we have to analyze
in deep the precession period compatible with any of the previously presented models.

Our first case associated to a Blandford-Znajek jet lunch mechanism is very difficult to recon-
cile with this period, because the precession must be related to the orbital period, which is far from
a yearly timescale. On the other hand a Bardeen-Petterson precession would lead to a precession
period [33] of:

Pp =
2πGM•

c3

∫ ξout
ξin

Σ(ξ )[Φ(ξ )]−1ξ 3dξ∫ ξout
ξin

Σ(ξ )Ψ(ξ )[Φ(ξ )]−2ξ 3dξ

, (6.1)

where Φ(ξ ) = ξ 3/2 + a, Ψ(ξ ) = 1− (1− 4aξ−3/2 + 3a2ξ−2)1/2 and Σ(ξ ) is the accretion disk
surface density, and ξ is a the radius non-dimensionalised with Rg. Let assume again ξin = ξms and
that Σ(ξ ) is a potential function with exponent s ∈ {−2,−1,0} to model different decreasing (or
constant) behaviors. We will take ξout = 103ξms as in [14] and numerically integrate the previous
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equation to obtain the precession period as a function of a and s as may be seen in Fig. 2. As
a result, we can check that the ∼ 3 years period of our fitting is only compatible with a too slow
spinning black hole. However, it is noteworthy that a more realistic result compatible with previ-
ously assumed a = 0.1 appears when assuming a precession of the order of the canonical orbital
period of ∼ 18 days. It may seems awkward to make such an hypothesis, but some facts supports
it. For instance, many low mass X-ray binaries (e.g. Her-X1 [34], SMC X-1 [35]) show a slight
variability in their precession periods, and the same seems to be the case of GRS 1758–258 [36],
with Pp varying from 18.04 to 18.47 days. In addition, the BlackCAT catalogue of stellar black
holes in X-ray transients [37] contains data that clearly show that almost all the measured orbital
periods for low mass X-ray binaries are of ∼ 1 day or even shorter.

In any case, both solutions need a constant density disc. It is possible that our hypothesis
on the disc size was wrong, but a smaller disc would lead to shorter, less reasonable periods. A
larger disc compatible with the Sakura-Sunyaev solution s = −3/4 for disc density together with
the a = 0.1 black hole spin may be found, but for the ∼ 3 year precession period it leads to a too
unrealistic outer radius of 105Rg , which is too close to the binary separation and would lead to a
brighter emission from the disc. On the other hand, a precession period of 8 days leads to a much
more adequate outer radius of 8.5×103Rg.

Our last considered scenario to support precession in GRS 1758–258 was based on tidal torque.
The precession period Pp may be related to orbital period Po through [28, 38]:

Po

Pp
=

3
7

q√
1+q

(
0.49

0.6+q2/3 ln(1+q−1/3)

)3/2

κ
3/2 cosδ . (6.2)

Here, the inclination δ of the binary orbit with respect to the accretion disk plane gives rise to
the observed precession. The jet then subtends a cone with a half-opening angle equal to the
orbit inclination, so δ = ψ , which we adopt from the model fit (ψ = 1.4◦; see Table 1). A κ ≡
Rout/RRochelobe value of ∼ 0.86 is taken from literature [39, 40]. If the classical companion KIV
spectral type is assumed, with Po = 18.45 days, then the Pp ∼ 3 years of our fit would lead to
Po/Pp = 0.017, which is half of the theoretical value obtained from Equation 6.2. However, the
scenario proposed by the authors with an A5V companion and Po ∼ 0.6 day [12, 13, 14] together
with the assumption of Pp = 18.45 days would lead to a Po/Pp very much closer to the one derived
from Equation 6.2. In addition, the same theory [28] leads to a too large accretion disc for being
compatible with observed emission if the classical KIV scenario is assumed.

Therefore, although precession is probable in GRS 1758–258 system, there is a clear lack of
consistency between the theoretically acceptable and the fitted value of the precession period. On
the other hand, instabilities seem to be a natural explanation for the evolution of the radio jets in
GRS 1758–258, as has been already pointed out [16]. RT and KH instabilities grow with timescales
of the same order of magnitude [16, 41], which for GRS 1758–258 is of about 800 days or more.
Current driven instabilities growth timescale is τCD ∼ 10R jet/vA [42], with vA being the Alfvén
velocity. Assuming equipartition and ultrarelativistic plasma, and a measured jet radius R j = 0.1
pc, τCD ' 1.5×103 days. The helical pattern in the 1997 map in Fig. 1 has a wavelength λ ∼ 0.62
pc at the assumed distance of 8.5 kpc to the source. Thus, the CD kink instability would have
a reasonable v j ∼ λ/τCD ∼ 0.5c but only if it should start very close to the onset of the helical
structure. And this seems problematic, because CD instabilities need to be triggered very near the
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black hole, where the magnetic fields are too strong. However, KH instabiliites may start far from
the central engine, and the same reasoning would account for v j ∼ λ/τKH ∼ c which is reasonable
for a lower τKH limit. So, instabilities such as these, or even the recently proposed centrifugal
one [43] (that may appear in the case of curved jets confined by an external medium at rest) could
explain the observed evolution in GRS 1758–258 radio jets.

7. Conclusions

We can conclude that the GRS 1758–258 system is probably composed of an A5V companion
and a ∼ 10 M� black hole with an orbital period Po ∼ 0.6 days. The radio jets could be precessing
with a period Pp = 18.45 days, the up-to-now assumed orbital period. But this short precession
period would lead to too wiggled structures in radio maps, which are not observed. Therefore,
as previously proposed [16], the growth of instabilities seems to be the cause of the changing
morphology along years in the radio maps of GRS 1758–258. All this discussion is being the
matter of a paper in a near future.
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