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The suppression of bottomonia in ultrarelativistic heavy-ion collisions is a smoking gun for the
production of a strongly interacting final state in ultrarelativistic heavy-ion collisions. Further-
more, these final state interactions are consistent with the production of a hot hydrodynamically
expanding quark-gluon plasma with initial temperatures on the order of 600-700 MeV at LHC col-
lision energies. Models which incorporate plasma screening and bound-state breakup based on
high-temperature quantum chromodynamics are in good agreement with the centrality, transverse-
momentum, and rapidity dependence of the suppression seen in the highest energy LHC Pb-Pb
collisions. The models of heavy-quark bound state breakup/formation are coupled to the soft
dynamics of the quark-gluon plasma using 3+1d relativistic anisotropic hydrodynamics. At later
times, excited state feed-down is taken into account using independently constrained excited state
feed down fractions. Comparisons with LHC experimental data are consistent with primordial
suppression of all bottomonium states, with states having the lowest binding energies suffering
the most suppression. In this proceedings contribution, I will review recent work to (a) include
the effects of regeneration on bottomonium production and (b) to assess the effects of a rapidly
changing in-medium potential on bottomonium production in the quark-gluon plasma.
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Using bottomonium production as a tomographic probe of the quark-gluon plasma

1. Introduction

The ongoing ultrarelativistic heavy-ion collision experiments at Brookhaven National Labo-
ratory’s (BNL) Relativistic Heavy Ion Collider (RHIC) and the European Organization for Nu-
clear Research’s (CERN) Large Hadron Collider (LHC) probe the properties of the quark-gluon
plasma (QGP). In the QGP colored partons are not confined to live inside hadrons, but can instead
propagate over large distances compared to hadronic scales. One expects to generate a QGP in
high temperature and/or high net-baryon density environments. In the highest energy collisions
at RHIC and the LHC one probes the high temperature and low net-baryon density region of the
quantum chromodynamics (QCD) phase diagram. In this region of the QCD phase diagram, lattice
gauge theory calculations have found that there is a smooth (crossover) transition from the hadronic
phase to the QGP phase at a pseudo-critical temperature of approximately Tpc ' 155 MeV [1, 2].
Once the temperature of the QGP exceeds this temperature, light-quark bounds states such as the
pion quickly disassociate, however, lattice and perturbative QCD calculations find that heavy-quark
bound states such as the J/Ψ and the ϒ can survive to much higher temperatures before breaking
up. In practice, one finds that the J/Ψ and ϒ(1s) states survive to temperatures of approximately
300-400 MeV and 600-700 MeV, respectively [3, 4, 5].

In the seminal papers of Karsch, Matsui, and Satz (KMS) they made the first predictions that
heavy quarkonia would “melt” in the QGP [6, 7]. In addition, they demonstrated that the precise
way in which heavy quarkonium bound states melted could provide insight into properties of the
QGP such as its initial temperature. The model used by KMS was based on a non-relativistic poten-
tial which is justified in the large quark mass limit. This can be made more formal using effective
field theory methods to integrate out different energy/momentum scales resulting in potential-based
non-relativistic QCD (pNRQCD) [8, 9, 10, 11]. Based on direct high-temperature quantum field
theory calculations and effective field theory calculations, it is now known that the in-medium
heavy-quark potential is complex-valued, with the real part mapping to the typical Debye-screen
potential and the imaginary part being related to the in-medium breakup rate of heavy-quark bound
states [12, 13, 14, 15, 16, 17, 18, 19]. The imaginary part of the potential makes the quantum
evolution non-unitary (non-Hermitian Hamiltonian), which can be understood in the context of
open quantum systems in which there is a heavy-quark bound state coupled to a thermal heat bath
[20, 21, 22, 23, 24, 25, 26, 27, 28, 29].

Models which incorporate plasma screening and bound-state breakup based on high-temperature
quantum chromodynamics are in quite good agreement with the centrality, pT , and y depen-
dence of the suppression seen at the highest LHC collision energies. The models of heavy-quark
breakup/reformation are coupled to the soft-sector of quark-gluon plasma using 3+1d anisotropic
hydrodynamics [30, 31, 32, 33, 34, 35, 36] to describe the evolution of the system’s temperature
and viscous corrections [17, 18, 37, 38, 39, 40, 41, 42]. In parallel, there have been applications
of the T-matrix approach to heavy quarkonium suppression and regeneration which also have good
agreement with the bottomonium suppression data [43, 44, 45, 46, 47]. In both approaches, excited
state feed-down is taken into account after QGP kinetic freezeout. Comparisons of both model’s
predictions with LHC experimental data are consistent with primordial suppression of all bottomo-
nia states including the ground state, with the states having the lowest binding energies suffering
the most suppression. In the proceedings, I will review some recent advances in the theory and
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phenomenology of heavy quarkonium suppression.

2. Methodology

In order to model the dissipative dynamics of the QGP we use 3+1d anisotropic hydrody-
namics [35]. Anisotropic hydrodynamics is a dissipative relativistic hydrodynamics framework
which resums an infinite number of terms in the fluid’s inverse Reynolds number, allowing it
to describe the early-time non-equilibrium dynamics of the QGP into which bottomonium are
formed more accurately. From these simulations once sees that the largest local rest frame pres-
sure anisotropy comes from the difference of the longitudinal and transverse pressures (PL/PT <

1). To take this longitudinal to transverse momentum-space anisotropy into account we intro-
duce an anisotropy parameter ξ and a local-rest-frame one-particle distribution function of the

form f (p,x) = feq

(√
p2

T +[1+ξ (x)]p2
z

/
Λ(x)

)
, where −1 ≤ ξ (x) < ∞ is the local spheroidal

momentum-space anisotropy parameter and Λ(x) is the local transverse temperature [48, 49]. This
form takes into account the difference between the transverse and longitudinal pressures, which is
the most important viscous correction generated in heavy-ion collisions.

For the primary model discussed herein we will use the internal-energy-based potential speci-
fied originally in Ref. [38]. In the model, the real part of the potential is obtained from the internal
energy of the heavy quark/anti-quark system

ℜ[V ] = −a
r
(1+µ r)e−µ r +

2σ

µ

[
1− e−µ r]−σ r e−µ r− 0.8σ

m2
br

, (2.1)

with mb = 4.7 GeV, a = 0.385, σ = 0.223 GeV2 [50]. The last term is a temperature- and spin-
independent finite-quark-mass correction taken from Ref. [51]. In this expression, µ = G (ξ ,θ)mD

[13, 17, 38] is the anisotropic Debye mass, where G is a function which depends on the degree of
plasma momentum-space anisotropy ξ , the angle of the line connecting the quark-antiquark pair
with respect to the beamline direction θ , and the isotropic Debye mass mD = 1.4

√
1+N f /6gsT

[52].1. The imaginary part of the potential ℑ[V ] is taken from a leading-order perturbation theory
calculation in the small-ξ limit [12, 16, 15, 53]

ℑ[V ] = −αsCFT
{

φ(r/mD)−ξ [ψ1(r/mD,θ)+ψ2(r/mD,θ)]
}
, (2.2)

where φ , ψ1, and ψ2 are special functions which can be expressed in terms of the Meijer G-
function. We close by emphasizing that, since the local temperature varies in time, the potential
above is inherently time dependent. We will now discuss two approaches to this problem.

2.1 The adiabatic limit

In the first approach, one assumes that the time scale for variation of the potential is long
compared to the timescale of the internal quantum dynamics. This gives the adiabatic limit. In this
limit one can calculate the instantaneous breakup rate by solving a time-independent Schrödinger
equation to obtain the real and imaginary parts of the bound-state energy as a function of the

1In the limit ξ → 0, one has G = 1 and the real part of the potential above reduces to the internal energy derived
from the original Karsch-Mehr-Satz potential [7].
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Figure 1: RAA versus Npart for ϒ(1S) and ϒ(2S). Left panel shows
√

sNN = 2.76 TeV with CMS data from
[55] and the right panel shows

√
sNN = 5.02 TeV with preliminary CMS data from [56]. Lines correspond

to three different values of the shear viscosity to entropy density ratio.

local temperature T and momentum-anisotropy ξ [18, 38] and then combine these results with the
3+1d hydrodynamical simulation results for T (x, t) and ξ (x, t). To obtain the suppression (survival
probability ignoring regeneration) one uses

RAA(pT ,y,x⊥,b) = e−ζ (pT ,y,x⊥,b) ,

ζ ≡Θ(τ f − τform)
∫

τ f

max(τform,τ0)
dτ Γ(τ,x⊥,ς = y) , (2.3)

where b is the heavy-ion impact parameter, τform = γτ0
form = ET τ0

form/M where M is the mass of the
state, and τ0

form is the formation time of the state at rest. The function Γ is the breakup rate which
is determined separately as function of the temperature and anisotropy parameter from solution to
the 3d Schrödinger equation [38]. For the rest frame formation times, we assume that they are
proportional to the inverse vacuum binding energy [54]. For the ϒ(1s), ϒ(2s), ϒ(3s), χb1, and χb2

states, we use τ0
form = 0.2, 0.4, 0.6, 0.4, and 0.6 fm/c, respectively. Below we will refer to this model

as KSUa.

Results

In Fig. 1 we plot the Npart dependence of bottomonium suppression. On the left we show the
theoretical predictions for ϒ(1s) and ϒ(2s) suppression for 2.76 TeV Pb-Pb collisions. The exper-
imental data is from the CMS collaboration [55] and the long-dashed blue, dashed red, and solid
black lines correspond to different assumed values of the shear viscosity to entropy density ratio,
η/s. For each value of η/s, the initial central temperature was adjusted in order keep the total
charged hadron multiplicity fixed. On the right we show the same at 5.02 TeV along with predic-
tions for the ϒ(3s) suppression. The experimental data for this figure was taken from Ref. [56]. As
this figure demonstrates, the KSUa model works well to describe the centrality dependence of the
observed RAA of the ϒ(1s) and ϒ(2s) well at both collision energies.

In Fig. 2 we show the transverse-momentum dependence of the ϒ(1s) and ϒ(2s) RAA. The
left plot shows a comparison with CMS data [56] collected in the rapidity interval |y|< 2.4 and the
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Figure 2: RAA versus pT for ϒ(1S) and ϒ(2S) at
√

sNN = 5.02 TeV. Left panel shows preliminary CMS data
from [56] and the right panel shows preliminary ALICE data from [57]. Lines are same as Fig. 1.
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Figure 3: (Left) RAA versus y for ϒ(1S) at
√

sNN = 2.76 TeV. (Right) Same at
√

sNN = 5.02 TeV.

right plot shows a comparison with ALICE data [57] collected in the rapidity interval 2.5< y< 4.0.
Once again, we see that the KSUa model describes the data quite well in both rapidity windows.
In the model, the decrease in the suppression with increasing transverse momentum comes solely
from the time dilation of the bound state formation time.

In Fig. 3 we show the rapidity dependence of the ϒ(1s), ϒ(2s), and ϒ(3s) RAA. The left plot
shows model predictions for 2.76 TeV collisions together with combined CMS and ALICE data.
The right plot shows the same at 5.02 TeV. Note that in both plots one sees a small increase in
the KSUa model RAA at central rapidity which is associated with the effect of regeneration. In
the left plot we see that the KSUa model does not agree with the ALICE ϒ(1s) data points (open
circles), however, the model does a reasonable job describing both the CMS and ALICE rapidity
dependence at 5.02 TeV (right) and the rapidity dependence of the CMS data at 2.76 TeV (left).

In Fig. 4 we show results from two different collision energies. The left plot shows the Npart

dependence of the ϒ(1s) RAA for 5.02 TeV collisions compared to data reported by the ALICE
collaboration [57]. Once again we see that the KSUa model does a quite good job description the
centrality dependence of the observed ϒ(1s) suppression. Finally, turning to the right plot we com-
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Figure 4: (Left) RAA versus Npart for ϒ(1S) at
√

sNN = 5.02 TeV compared to preliminary ALICE data [57].
(Right) RAA versus Npart for ϒ(1S) at

√
sNN = 200 GeV compared to preliminary STAR data [58].

pare the KSUa model and the KSUa model using the Rothkopf potential [42, 59] with preliminary
experimental data collected by the STAR collaboration [58].2. Compared to the preliminary data
it seems that the KSUa model under-predicts the amount of suppression observed by STAR, how-
ever, the Rothkopf potential does a better job. This, however, comes at a cost since the Rothkopf
potential overpredicts the amount of suppression at higher collision energies [42, 59].

2.2 First steps beyond the adiabatic approximation

In order to go beyond the adiabatic approximation one can instead solve the time-dependent
Schrödinger equation with a time-dependent complex in-medium heavy quarkonium potential. In a
recent paper [60], it was demonstrated that one can numerically solve the Schrödinger equation in
real-time using an efficient split-operator method and extract the survival probability directly from
the final quantum wave function. In this case, one uses time-dependent eigenstates and computes
the overlap of these with the time-evolved wave function.

For a radial potential, the starting point is the expansion of the quantum mechanical wavefunc-
tion [60]

u(r,θ ,φ , t) = N
`max

∑
`=`min

`

∑
m=−`

1√
2`+1

u`(r, t)Y`m(θ ,φ) , (2.4)

from which one derive the following evolution equation

u`(r, t +∆t) = exp(−iĤ`∆t)u`(r, t) , (2.5)

with Ĥ` =
p̂2

2m +Veff,`(r, t) and Veff,`(r, t) =V (r, t)+ `(`+1)
2mr2 and p̂ =−i d

dr .
Once cast into this form, one can use the approximate time evolution operator which follows

from application of the Baker-Campbell-Hausdorf formula

exp(−iĤ`(t)∆t)' exp(−iVeff,`(r, t)∆t/2)exp
(
−i

p̂2

2m
∆t
)

exp(−iVeff,`(r, t)∆t/2)+O((∆t)2) .

(2.6)
2The Rothkopf model uses the same background evolution and adiabatic approximation as the KSUa model, but

uses a different underlying complex potential which is constrained in equilibrium by lattice QCD calculations [42].
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Y(1s) : Real-time evolution

Y(1s) : Adiabatic approximation
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Figure 5: Left plot shows the survival probability of the ϒ(1s) as a function of proper time. The right plot
shows the overlaps extracted using the real-time evolution.

Since u`(r, t) must vanish at the origin, one can use a real-valued Fourier sine series to describe
both the real and imaginary parts of the wave function. This guarantees that the correct boundary
conditions at r = 0 are satisfied automatically and allows one to easily exclude the point r = 0. The
resulting update steps are

1. Update in configuration space using a half-step: ψ1 = exp(−iVeff,`∆t/2)ψ0.

2. Perform Fourier sine transformations on real and imaginary parts separately:
ψ̃1 = Fs[ℜψ1]+ iFs[ℑψ1].

3. Update in momentum space using: ψ̃2 = exp
(
−i p2

2m ∆t
)

ψ̃1.

4. Perform inverse Fourier sine transformations on real and imaginary parts separately:
ψ2 = F−1

s [ℜψ̃2]+ iF−1
s [ℑψ̃2].

5. Update in configuration space using a half-step: ψ3 = exp(−iVeff,`∆t/2)ψ2.

After these steps are complete ψ3 contains the updated wave function. One then proceeds by
iterating this procedure. Note that in the case that the potential is real-valued this method exactly
preserves unitarity of the quantum wave function. In general, if the potential is time dependent,
then there will be quantum state mixing since the instantaneous wave functions change in time.
This leads to the possibility of quantum production of excited states as we will see below.

One can initialize the system with a linear superposition of self-consistently determined in-
medium bottomonium wave functions and then evolve the wave function to a given time. At
any time during the evolution one can project on the instantaneous wave functions of the time-
dependent potential. These are determined by a modified point-and-shoot method [60]. Having
obtained the full numerical solution, one can compare the resulting survival probabilities with
those obtained using the adiabatic approximation with the same underlying complex potential.

Results

For the background, Ref. [60] considered a transversally homogeneous and boost-invariant
ideal fluid with a temperature which decreases as T (τ) = T0(τ0/τ)1/3. In Fig. 5 we present a
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Y(1s) : Real-time evolution
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Figure 6: (Left) RAA versus Npart for ϒ(1S) at
√

sNN = 5.02 TeV compared to preliminary ALICE data [57].
(Right) RAA versus Npart for ϒ(1S) at

√
sNN = 200 GeV compared to preliminary STAR data [58].

comparison of the ϒ(1s) survival probability obtained using the adiabatic model (KSUa) and the
real-time evolution (KSUd). The left plot shows the survival probability of the ϒ(1s) as a function
of proper time. In this panel, the solid black line is the result obtained using real-time evolution
and the dashed red line is the result obtained using the adiabatic approximation. The right panel
shows the overlaps extracted using the real-time evolution. In this panel, the solid black, shorted-
dashed red, and long-dashed blue lines are the overlaps computed for the 1s, 2s, and 3s states. In
both panels the initial temperature was taken to be T0 = 0.6 GeV at τ0 = 1 GeV−1 and the initial
wave function consisted of a 1s state with the wave function determined self-consistently using the
complex in-medium heavy quarkonium potential.

As we can see from the left panel of Fig. 5 the correction to the adiabatic evolution is small in
this case, which corresponds physically to the evolution in the center of the QGP created in LHC
2.76 TeV collisions. From the right panel, however, we see that, due to the time dependence of the
in-medium potential, it is possible to dynamically generate overlaps with the excited states. In this
case, we see overlaps with both the ϒ(2s) and ϒ(3s) appearing, but they are quite small and would
represent only a small correction to ϒ(2s) and ϒ(3s) production.

In Fig. 6 we present similar comparisons for a lower initial temperature consistent with a
peripheral heavy-ion collision or the periphery of a central heavy ion collision at RHIC or LHC,
T0 = 0.225 GeV at τ0 = 1 GeV−1. At this temperature, both the ϒ(1s) and ϒ(2s) are bound. As
a result, the quantum state of the system was initialized as a linear superposition with the relative
probability set by the ratio of their production cross sections in pp collisions. The left plot shows
the ϒ(1s) survival probability and the right plot shows the ϒ(2s) survival probability. For the ϒ(1s)
there are visible corrections to the adiabatic evolution, however, they are still quantitatively on the
order of a few percent. In contrast, the right plot shows that the ϒ(2s) correction can be as large as
18%, with the real-time evolution giving enhanced suppression.

3. Conclusions

In this proceedings contribution I presented a brief review of the progress that has been made
in recent years to understand the suppression of bottomonium bound states in heavy-ion collisions.
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In the first part, I presented the "standard" KSUa model which builds upon advances in the calcula-
tion of in-medium heavy quarkonium evolution using finite temperature quantum field theory and
effective field theory. These first principles calculations are then folded together with a realistic
3+1d anisotropic hydrodynamics background which has been independently tuned to soft observ-
ables [33, 34, 36]. I demonstrated that the KSUa model provides a quite good description of the
data collected by both ALICE and CMS at LHC, however, it seems to under-predict the amount
of ϒ(1s) suppression at RHIC energies based on comparisons to preliminary STAR data. In the
second part, I presented some recent work on relaxing the adiabatic approximation. The results
shown were for the academic case of Bjorken expansion, but the comparisons allowed us to gauge
the order of magnitude of the error made when taking the adiabatic limit. We are currently working
on extending the treatment to 3+1d in order to determine the final phenomenological impact.
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