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1. Introduction

A significant part of Miklos Gyulassy’s research has been dedicated to the physics of jet
quenching, as described in other talks in this symposium [1]. In the late 1980s, together with
Gavin and Jackson, he co-authored a couple of paper on J/ψ modification in fixed-target O+U col-
lisions [2, 3], pointing out that quarkonium suppression can occur not only in the QGP but also in
a hadron gas. This observation remains pertinent today, as experimental measurements of the sup-
pression of excited versus ground bottomonium states ϒ(2S)/ϒ(1S) as a function of the number of
charged particle tracks, shows the same trend for high-multiplicity p+p, p+Pb, and Pb+Pb collisions
at the LHC [4]. ψ ′, χc and ϒ suppression in d+Au reactions was also measured at RHIC [5, 6].

To address the modification of quarkonium cross sections in p+A and A+A reactions, we aim
to develop a universal microscopic theory of J/ψs and ϒs applicable to different phases of nuclear
matter. The effective field theory approach is particularly suitable, as it can provide a model-
independent description of the universal physics of energetic particle production in the background
of a QCD medium. It has been applied to light and open heavy flavor final states to formulate a
new theory - soft collinear effective theory with Glauber gluons (SCETG) [7, 8].

With this in mind, we first observe that calculations of heavy quarkonium production involve
hierarchies of momentum and mass scales. These scales are pT , mQ, mQλ , mQλ 2, and ΛQCD,
where pT is the quarkonium transverse momentum, mQ the heavy quark mass, and λ the heavy
quark-antiquark pair relative velocity. The established and most successful effective theory that
describes quarkonium production and decays is non-relativistic QCD (NRQCD) [9]. As in the vac-
uum, production of quarkonia in nuclear matter remains a multi-scale problem. We have recently
demonstrated that one can generalize NRQCD to incorporate interactions of the non-relativistic
heavy quarks with the medium [10]. This was achieved by incorporating the Glauber and Coulomb
gluon exchanges of the heavy quarks with the quasiparticles of QCD matter. We believe this ver-
sion of NRQCD will facilitate a much more robust and accurate theoretical analysis of the wealth
of existing and upcoming quarkonium measurements.

Figure 1: Miklos Gyulassy and Gyorgyi Gyulassy with colleagues and friends at the 13th International
Workshop in High pT Physics in the RHIC and LHC Era.
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In Section II I will first show that the successful jet quenching approach is challenged by the
totality of the ground and excited charmonium state measurements. In Section III the formulation
of NRQCDG is described. The Lagrangian of the new theory to leading and subleading power is
written down in Section IV. I conclude these proceedings in Section V.

2. Energy loss approach to quarkonium production

Jet quenching [11, 12] is the physical mechanism behind the suppression of high transverse
momentum particles and jets in ultrarelativistic nuclear collisions. Understandably, it has been
suggested [13, 14] that energy loss effects can reduce the cross section of J/ψ production at the
LHC [15, 16]. In Ref. [10] we revisited this conjecture making use of the leading power (LP) fac-
torization of NRQCD [17, 18], which is expected to hold at high transverse momenta (pT � mQ).
In this limit the production cross section is factorized into short distance matching coefficients that
describe the production and propagation of a parton k and the NRQCD fragmentation functions,

dσi j→Q+X(pT ) = ∑
n

∫ 1

xmin

dx
x

dσi j→k+X ′
( pT

x
,µ
)

D n
k/Q(x,µ) . (2.1)

The dependence on the factorization scale, µ , allows for the resummation of large logarithms
through the use of renormalization group techniques such as the DGLAP evolution of the frag-
mentation functions. The NRQCD fragmentation functions can be written in terms of the same
long-distance matrix elements (LDMEs) that appear in the fixed order formulas,

D n
k/Q(x,µ) =

〈OQ(n)〉
m[n]

c

dk/n(x,µ) , (2.2)

where [n] = 0 for S-wave and [n] = 2 for P-wave quarkonia. The short distance coefficients,
dk/n(x,µ), are functions of the fraction, x, of the parton energy transferred to the quarkonium state.
Recent phenomenological applications to charmonia show that Eq. (2.1) may hold to transverse
momenta pT ∼ 10 GeV [19]. In this work we also considered the J/ψ feed-down from decays
of excited quarkonium states – ψ(2S) : Br

[
ψ(2S)→ J/ψ +X

]
= 61.4± 0.6%, χc1 : Br

[
χc1 →

J/ψ + γ

]
= 34.3±1.0%, χc2 : Br

[
χc2→ J/ψ + γ

]
= 19.0±0.5%.

Within the energy loss approach the cross section for and quarkonium production per elemen-
tary nucleon-nucleon collision in the leading power limit can then be expressed as

1
〈Ncoll.〉

dσh
med

dyd2 pT
= ∑

c

∫ 1

zmin

dz
∫ 1

0
dε P(ε)

dσ c
(

pT
(1−ε)z

)
dyd2 pTc

1
(1− ε)2z2 Dh/c(z) . (2.3)

Here, P(ε) is the probability distribution for the hard parton c to lose energy due to multiple gluon
emission, dσ c(pT )

dyd2 pTc
is the hard partonic cross section, and 〈Ncoll.〉 is the average number of binary

nucleon-nucleon collisions. We use the soft gluon emission limit of the full medium induced
splitting function, which have been recently applied to light and heavy flavor jets and jet sub-
structure [20, 21, 22]. Comparison our theoretical calculations to ATLAS data on the transverse
momentum dependence of J/Ψ attenuation from 0-10% central

√
sNN = 5.02 TeV Pb+Pb colli-

sions at the LHC [16] is shown in the left panel of Figure 2. The data is not described by the
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Figure 2: Left: comparison of the suppression of J/ψ (yellow band) evaluated in an energy loss model with
coupling between the parton and the medium g = 1.7−1.9 to ATLAS data from

√
sNN = 5.02 TeV Pb+Pb

collisions at the LHC [16]. Right: the double ratio of ψ(2S) to J/ψ suppression [15] as a measure of the
relative significance of QCD matter effects on ground and excited states is compared to energy loss model
calculations (purple bands). Figures are reproduced from Ref. [10].

theoretical predictions. Energy loss calculations overpredict the suppression of J/ψ and at high pT

the discrepancy is as large as a factor of 3. Even more importantly, in the right panel of Figure 2 we
show the relative medium-induced suppression of ψ(2S) to J/ψ in matter. The energy loss model
yields a slightly smaller suppression for the ψ(2S) state when compared to J/ψ . Conversely, the
experimental results show that the suppression of the weakly bound ψ(2S) is 2 to 3 times larger
than that of J/ψ . It is clear that the energy loss model is incompatible with the hierarchy of excited
to ground state suppression of quarkonia in matter.

3. Non-relativistic QCD with Glauber gluons

In formulating a generic framework of quarkonium propagation in a variety of strongly-interacting
media we are interested in the regime where matter itself might be non-perturbative, but the inter-
action with its quasiparticles can be described by perturbation theory. When an energetic particle
traverses QCD matter, the interaction with the scattering centers of the medium is typically me-
diated by t−channel exchanges of off-shell gluons, called Glauber gluons. We will call the new
effective theory NRQCD with Glauber gluons, or NRQCDG. The Lagrangian of NRQCDG can
be constructed by adding to the vNRQCD Lagrangian [23] the additional terms that include the
interactions with quark and gluon sources through (virtual) Glauber/Coulomb gluons exchanges

LNRQCDG = LvNRQCD +LQ−G/C(ψ,Aµ,a
G/C)+LQ̄−G/C(χ,A

µ,a
G/C) . (3.1)

In Eq. (3.1) the effective fields Aµ,a
G/C incorporate the information about the source fields, which can

be collinear, static, or soft. To obtain the form and perform the power-counting of the terms in
LQ−G/C(ψ,Aµ,a

G/C) we use three different approaches:

• The background field approach where we perform a shift in the gluon field in the NRQCD
Lagrangian (Aµ

us→ Aµ
us +Aµ

G/C) and then perform the power-counting established in Table 1
to keep the leading contributions.
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• A hybrid method, where from the full QCD diagrams for single effective Glauber/Coulomb
gluon insertion with appropriate power-counting one can extract the Feynman rules.

• A matching method where we expand in the power-counting parameter, λ , the full QCD
diagrams describing the interactions of an incoming heavy quark and a light quark or a gluon.

Although there are subtleties involved in the background field method, the fact that all three ap-
proaches then give the same Lagrangian is a non-trivial test of our derivation.

For any gluon interacting with the vNRQCD heavy quark the scaling q0
G/C ∼ λ 2 and qi

G/C . λ

is required so that the heavy quark momenta scale as (λ 2,λ ), see Figure 3. If all of the three-
momenta components scale as λ , i.e. qµ

C ∼ (λ 2,λ ) then this corresponds to Coulomb (or potential)
gluons. Collinear particles cannot interact with the heavy quarks through the exchange of Coulomb
gluons since this will push the collinear particles away from their canonical angular scaling. The
relevant mode here is the Glauber gluons, which scale as qµ

G ∼ (λ 2,λ ,λ ,λ 2). In this EFT we
include Coulomb gluons for the interaction of the heavy quarks with soft and static modes and
Glauber gluons for the interactions with collinear modes:

static and soft sources: qµ

C ∼ (λ 2,λ 1,λ 1,λ 1) ,collinear sources: qµ

G ∼ (λ 2,λ 1,λ 1,λ 2) . (3.2)

rµ � (�2,�,�,�)
<latexit sha1_base64="FvzpvZTe7yR1KAT4oM8F9CfQKmY=">AAACMHicbVDLSgMxFM34rPU16tJNsFQqSJmpgi4LblxWsA/oTEsmk2lDk5khyYhlmO/wP9y71V/QlbgTv8K0nUVtvRByOOeee5PjxYxKZVkfxsrq2vrGZmGruL2zu7dvHhy2ZJQITJo4YpHoeEgSRkPSVFQx0okFQdxjpO2NbiZ6+4EISaPwXo1j4nI0CGlAMVKa6pu26KUOTzJHUg4rDtNOH/XSWnae48X7rG+WrKo1LbgM7ByUQF6Nvvnt+BFOOAkVZkjKrm3Fyk2RUBQzkhWdRJIY4REakK6GIeJEuun0axksa8aHQST0CRWcsvOOFHEpx9zTnRypoVzUJuR/WjdRwbWb0jBOFAnxbFGQMKgiOMkJ+lQQrNhYA4QF1W+FeIgEwkqnWSzPr5kMjxV/zHQ09mIQy6BVq9oX1drdZal+modUAMfgBFSADa5AHdyCBmgCDJ7AC3gFb8az8W58Gl+z1hUj9xyBP2X8/AL+Pqoi</latexit>

r�
µ � (�2,�,�,�)

<latexit sha1_base64="lcTIZ0dv3HJNpvQig5ckzlk0N70=">AAACM3icbVC7TsMwFHXKq5RXgJHFoioUCVVJqQRjJRbGItGH1KSV47qthZ1EtoOoovwI/8HOCn+A2BADC/+A02YoLVeyfHTOPffaxwsZlcqy3o3cyura+kZ+s7C1vbO7Z+4ftGQQCUyaOGCB6HhIEkZ90lRUMdIJBUHcY6Tt3V+nevuBCEkD/05NQuJyNPLpkGKkNNU3a7E4TXqxw6PEkZTDssO0eYB6cTU5z/DifdY3i1bFmhZcBnYGiiCrRt/8dgYBjjjxFWZIyq5thcqNkVAUM5IUnEiSEOF7NCJdDX3EiXTj6e8SWNLMAA4DoY+v4JSdd8SISznhnu7kSI3lopaS/2ndSA2v3Jj6YaSIj2eLhhGDKoBpVHBABcGKTTRAWFD9VojHSCCsdKCF0vyadHio+GOio7EXg1gGrWrFvqhUb2vF+kkWUh4cgWNQBja4BHVwAxqgCTB4Ai/gFbwZz8aH8Wl8zVpzRuY5BH/K+PkFcs6rXw==</latexit>

qG/C
<latexit sha1_base64="6c6oXS4LAwjfDrII5fX9aItoprQ=">AAACBHicbVC7TsMwFL3hWcqrwMhiURUxlaQgwVipA4xFog+pjSrHdVqrthNsB1FFXdlZ4RfYECv/wR/wGSRthtJyJEtH59yXjxdypo1tf1srq2vrG5u5rfz2zu7efuHgsKmDSBHaIAEPVNvDmnImacMww2k7VBQLj9OWN6qlfuuRKs0CeW/GIXUFHkjmM4JNIrUeevHNeW3SKxTtsj0FWiZORoqQod4r/HT7AYkElYZwrHXHsUPjxlgZRjid5LuRpiEmIzygnYRKLKh24+m5E1RKlD7yA5U8adBUne+IsdB6LLykUmAz1IteKv7ndSLjX7sxk2FkqCSzRX7EkQlQ+nfUZ4oSw8cJwUSx5FZEhlhhYpKE8qX5Nenw0IinNBpnMYhl0qyUnYty5e6yWD3NQsrBMZzAGThwBVW4hTo0gMAIXuAV3qxn6936sD5npStW1nMEf2B9/QKv1Ziy</latexit>

Figure 3: Single Glauber/Coulomb gluon insertion vertex from the Lagrangian LQ−G/C, where the incom-
ing quark caries momentum pµ = mvµ + rµ and the outgoing one carries momentum p′µ = mvµ + r′µ .

The scalings of the Glauber and Coulomb fields can be established for different sources of
scattering in the medium and are presented in Table 1. Note that the scalings corresponds to the
maximum allowed components for each source.

Source Collinear Static Soft

Aµ

C ∼ n.a. (λ 1,λ 2,λ 2,λ 2) (λ 1,λ 1,λ 1,λ 1)

Aµ

G ∼ (λ 2,λ 3,λ 3,λ 2) n.a. n.a.

Table 1: The Glauber/Coulomb filed scaling for different sources of interaction in matter as calculated in
Ref. [10].

4. The Lagrangian of NRQCDG

The details of the derivation of the NRQCDG Lagrangian using the three different methods
discussed above can be found in our paper [10]. We summarize the leading and subleading terms

4
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in the Lagrangian that arise from the heavy quark sector coupling to the medium, i.e. LQ−G, from
virtual gluon insertions:

L
(0)

Q−G/C(ψ,Aµ,a
G/C) = ∑

p,qT

ψ
†
p+qT

(
−gA0

G/C

)
ψp (collinear/static/so f t) , (4.1)

and

L
(1)

Q−G(ψ,Aµ,a
G ) = g ∑

p,qT

ψ
†
p+qT

(2An
G(n ·P)− i

[
(P⊥×n)An

G

]
·σ

2m

)
ψp (collinear) ,

L
(1)

Q−C(ψ,Aµ,a
C ) = 0 (static) ,

L
(1)

Q−C(ψ,Aµ,a
C ) = g ∑

p,qT

ψ
†
p+qT

(2AC ·P +[P ·AC]− i
[
P×AC

]
·σ

2m

)
ψp (so f t) , (4.2)

where we use squared brackets in order to denote the region in which the label momentum operator,
Pµ , acts. If we consider the non-relativistic limit of the t-channel gluon exchange diagram for a
particular source, in addition to the above rules we obtain explicit expressions for the Glauber and
Coulomb fields Aµ,a

G , Aµ,a
C . The interested reader can find those results in [10].

5. Conclusions

Theory, phenomenology, and experimental measurements of quarkonia have gone a long way
since the early investigation of J/ψ production in fixed target experiments at CERN and the works
by Gavin, Gyulassy and Jackson. In these proceedings I reported on the derivation of the leading
and sub-leading Lagrangians of NRQCDG for a single virtual gluon exchange [10]. This was
achieved using three different approaches: i) the background field method, ii) a matching (with
QCD) procedure, and iii) a hybrid method. Explicit results for the Glauber and Coulomb fields
were also obtained. Even though I described the formal aspects of of NRQCDG, it can be easily
seen that the phenomenological studies of ground and excite J/ψ and ϒ states that we have done
in the past [24, 25] correspond to the leading medium correction L

(0)
Q−G/C(ψ,Aµ,a

G/C) and diagonal
quarkonim state to quarkonium state transitions. With the new theoretical framework at hand,
such calculations can be extended rigorously to different systems and to include medium-induced
transitions from and to exited states.
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