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We investigate how the so-called chameleon mechanism in F(R) gravity acts on the scalar mode
of gravitational waves appearing as an additional polarization mode to usual tensor modes in
general relativity. We calculate its amplitude in a simplified situation imitating the ground-based
gravitational wave detectors and estimate the detectability. Our conclusion is that it is almost
impossible to detect scalar mode due to the chameleon mechanism and space-based gravitational
wave detector would be a significant tool to detect such additional modes.
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1. Introduction

Gravitational waves (GWs) are now an important tool to investigate the possibility of alterna-
tive gravitational theories. One of the important property completely different from general rela-
tivity for alternative theories is the number of polarization modes. If we take F(R) gravity, which
has an action of an arbitrary function of the Ricci scalar instead of Einstein–Hilbert action, as an
example, it contains an additional scalar mode to usual tensor ones. Simultaneous observation of
GWs by multiple detectors are expected to give the information about the existence of the extra
polarization mode in near future. However, F(R) gravity has a so-called chameleon mechanism to
evade the experimental constraint on the fifth force due to the existence of an additional scalar de-
gree of freedom. In our work, we investigate the detectability of the scalar mode with considering
the chameleon mechanism.

2. F(R) gravity and chameleon mechanism

The action of the generic F(R) gravity model is given as follows:

S =
1

2κ2

∫
d4x

√
−gF(R)+

∫
d4x

√
−gLMatter[gµν ,Ψ] , (2.1)

where F(R) is a function of the Ricci scalar R and κ2 = 8πG = 1/M2
pl. Mpl is the reduced Planck

mass, and Mpl ≃ 2× 1018[GeV2]. LMatter denotes the Lagrangian for a matter field Ψ. We obtain
the equations of motion by taking the variation of the action (2.1) with respect to the metric gµν as
follows,

FR(R)Rµν −
1
2

F(R)gµν +(gµν□−∇µ∇ν)FR(R) = κ2Tµν(gµν ,Ψ) . (2.2)

FR(R) expresses the derivative of F(R) with respect to R, FR(R) = ∂RF(R). The energy-momentum
tensor Tµν is defined by Tµν(gµν ,Ψ) =−2/

√
−gδ (

√
−gLMatter(gµν ,Ψ))/δgµν . Taking the trace

of the equations (2.2), we obtain

□FR(R) =
1
3
[
2F(R)−RFR(R)+κ2T

]
, (2.3)

where the Ricci scalar R and the trace of the energy-momentum tensor T are given by R = Rµ
µ and

T = T µ
µ respectively.

We can define scalar field by the following identification: Φ ≡ FR(R). Solving the above
relation with respect to Φ, one can express the Ricci curvature R in terms of Φ, R = R(Φ). Then,
we can regard Eq. (2.3) as the equation motion for an additional scalar degree of freedom,

□Φ =
dVeff(Φ)

dΦ
, (2.4)

where we define the effective potential Veff by dVeff/dΦ = 1
3

[
2F(R)−RFR(R)+κ2T

]
. We can un-

derstand the general behavior of the scalar field by expanding Eq. (2.4) from the potential minimum
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Φ = Φmin, which is obtained by solving the stationary condition dVeff/dΦ = 0. The second deriva-
tive of the effective potential can be regarded as the mass of the scalar field. Defining R = Rmin

satisfying Φmin = FR(Rmin), we obtain

m2
Φ =

d2Veff(Φ,T )
dΦ2

∣∣∣∣
Φ=Φmin

=
1
3

[
FR(Rmin)

FRR(Rmin)
−Rmin

]
. (2.5)

It is the key feature of the chameleon mechanism that the effective potential Veff contains the trace
of energy-momentum tensor T . Since the potential minimum changes according to the matter
distribution, the mass of scalar field Eq. (2.5) acquires the environment dependence.

It is notable that Eq. (2.2) can have the de Sitter solution Rµν = Λgµν , if the following relation
satisfies:

2F(R)−RFR(R)+κ2T = 0 , (2.6)

which exactly corresponds to the stationary condition or potential minimum of the effective poten-
tial Veff. Thus, the F(R) gravity can be a solution to the dark energy problem giving naturally rise
to the cosmological constant [1].

In the chameleon mechanism, the scalar field potential depends on the energy-momentum
tensor of the other matter fields, which results in that the mass of the scalar field changes according
to the information of the surrounding matter fields. If we choose the potential so that the mass
increases at the high-density region and decreases at the low-density region, the chameleonic scalar
field can have the potential to explain the experiments in two different scales: In cosmological scale,
it behaves as a light scalar field accelerating the expansion of the universe. On the other hand, in
smaller scale, it has a large mass so that it does not affect any result of the gravitational experiments.

As an example, we consider a concrete model of F(R) gravity for dark energy which is free
from the curvature singularity problem[2, 3, 4]:

F(R) = R−βRc

[
1−

(
1+

R2

R2
c

)−n
]
+αR2 , (2.7)

In the large-curvature limit, we obtain the mass of scalar field at the potential minimum:

m2
Φ ≈ 1

3

1−2nβ
(

Rc
Rmin

)2n+1
+2 µ

Rc
Rmin

2n(2n+1)β
Rc

(
Rc

Rmin

)2n+2
+2 µ

Rc

−Rmin

 . (2.8)

where Rmin is determined by the energy-momentum tensor by Rmin ≈−κ2T . The detailed deriva-
tion is given in [5]. When we use the pressure-less dust for the matter fields, the trace of the
energy-momentum tensor is given as T =−ρ where ρ is the density of the matter, which gives the
density dependence to the mass through the curvature as Rmin = κ2ρ . Because the mass (2.8) is
the increasing function of the curvature, we can conclude that the scalar field becomes heavy in the
high-density region.
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3. Gravitational wave in F(R) gravity

Next, we consider the gravitational wave in F(R) gravity as a perturbation from the background
metric. We define the perturbation for the metric gµν and scalar field Φ:

gµν =bµν +hµν , (3.1)

Φ =Φmin +ϕ , (3.2)

where bµν is the background metric, and Φmin satisfies dVeff/dΦ = 0.
For simplicity, we assume that the background is maximally symmetric, that is, the Minkowski

and (anti-)de Sitter background. Then, we obtain the equations for the perturbation at the first order:

δRµν −
1
2

δRbµν −
1
2

F(R(b))

Φmin
hµν =

(
∇(b)

µ ∇(b)
ν −bµν□(b)−R(b)

µν

)
ϕ , (3.3)(

□−m2
Φ
)

φ =− 1
3

ΦminhµνR(b)
µν +

1
6

F(R(b))h , (3.4)

where we define the new scalar field perturbation φ ≡ ϕ/Φmin, to normalize the original perturba-
tion ϕ .

In the dark energy F(R) models, we cannot take the Minkowski background. However, since
the curvature of the background varies at cosmological scale, we can safely ignore the curvature
term and obtain the same equation in the Minkowski background as long as we consider much
smaller scale than cosmological one.

4. Environment dependence of scalar wave

Next, we solve Eq. (3.4) in a simple case. We consider the situation where the plane scalar
wave is propagating form infinitely far region to spherical high-density region. For more simplifi-
cation, we focus on the region close to the surface of the high density region where the scalar wave
enters almost vertically. The other situations are considered in [5]. For this assumption, we can
approximate the situation as the plane scalar wave propagates low-density region to high-density
region in (1+ 1) dimension. if we denote the propagating direction of the scalar mode of GWs
by z coordinate and the position of the boundary between the high-density region and space as
z = zb(= rb), Φbg can be approximated as follows:

Φbg(z) =

{
Φa (|z| ≤ zb)

Φ∞ − (Φ∞ −Φa)zb
e−m∞(z−zb)

z (zb < |z|)
, (4.1)

where subscripts a and ∞ means the potential minimum value for ρ = ρa,ρ∞ respectively. Substi-
tuting it into Eq. (3.4), one obtains the equation of motion for the single frequency scalar wave:

d2ϕ̃
dz2 =

(
m2

Φ(Φbg)−ω2) ϕ̃ , (4.2)

where ˜ means the Fourier expansion coefficient of ϕ . If we regard the right-hand side of the
equation as a potential, Eq. (4.2) takes the form of the wave equation with the potential V (z) ≡
m2

Φ(Φbg).
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Finally, we can make a rough estimation for an amplitude of the scalar wave in the high-
density region. For scalar waves with the frequency ω < mΦ, the solution of Eq. (4.2) inside of the
high-density region becomes

ϕ̃ =C e
√

m2
Φ−ω2z, (4.3)

where C is a constant which represents the amplitude of the scalar wave, and we took only one
mode of the solution in order to satisfy the boundary condition at the center. As an illustration,
if we choose a concrete model (2.7) with fixing the parameters as β = 2, n = 1 and µ = 10−62

and assume the energy density in the atmosphere ρ = ρa = 10−9[g/cm3] at around 105[m] of the
altitude, we obtain

ma ≃ 8×10−12[GeV] . (4.4)

Therefore, the suppression factor is roughly estimated as

exp[−
√

m2
a −ω2|z|]∼exp[−ma|z|]≃ 10−6×109

. (4.5)

The scalar waves which have a lower frequency than criterion frequency determined by the mass in
the atmosphere receive huge suppression at the detection. We also note that the criterion frequency
of the suppression can be calculated from ωc = ma by the unit conversion as ωc ≃ 1× 1013[Hz],
which is much higher than the current typical frequency of GWs detected by LIGO and Virgo.

Furthermore, the typical amplitude of the possible scalar mode by a binary system can be
estimated by the orbital period change of Hulse-Taylor binary[6] as

C ∼ o(0.01)×Atensor , (4.6)

where Atensor is a typical amplitude of the tensor mode from a binary system. At the detection in
grand-based detectors, the huge suppression factor should be multiplied to the amplitude. There-
fore, it is far beyond the detectable band of the current observational sensitivity.

5. Conclusion

We have investigated the detectability of the scalar mode in F(R) gravity focusing on the
chameleon mechanism. We have found it is almost impossible to detect such modes by grand-
based GW detectors due to the huge suppression in the atmosphere. However, currently planning
space-based detectors, such as eLISA and DECIGO, have the possibility to detect additional modes
since it is not affected by the chameleonic suppression of the atmosphere.
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