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INFN has produced a Machine Learning library in Python that applies Convolutional Neural
Networks to various common problems in the field of astroparticle identification and study in
suitable detectors. The library itself makes few assumptions and has few requirements that are
easily met in most astroparticle detectors. The Parallel Library for Identification and Study of
Astroparticles  (pLISA)  has  been  tested  against  simulated  events  for  the  KM3NeT/ARCA
detector.  Interesting  preliminary  results  have  been  obtained  for  up/down-going  particle
classification, muon/electron neutrino classification, Z component of the direction and energy
estimation. Already with very little optimization work and using limited hardware resources
(one  NVidia  GTX  GPU),  pLISA was  shown  to  compete  with  traditional  algorithms.  The
approach  allows  improvements  and  also  portability  to  other  detectors.  pLISA is  based  on
commonly used open source frameworks, which helps ensuring portability and scalability.
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1. Introduction

The project of a  parallel  Library for  Identification and  Study of  Astroparticles (pLISA)
has three motivations. First, GPUs provide enormous computing power for an affordable price.
Second,  reconstruction  of  the  primary  particle  in  astroparticle  detectors  involves  complex
algorithms, often with sub-optimal efficiency. Third, algorithm evolution only happens in steps
and is largely dependent on personal initiative, whereas a computer farm in constant training
might provide continuous improvements. pLISA added the ambitious goal of being usable in
different  contexts  with  different  detector  geometries  and  features,  with  the  only  price  of
retraining, which of course can be done automatically as more data are available from detectors
and/or simulations.

2. Structure and basic concepts

In its present shape, pLISA is an organised collection of Python scripts built on top of
popular open packages: Scikit-Learn[1], TensorFlow[2] and Keras[3]. All those building blocks
are available as open source and are actively developed by large teams. While this ensures that
they  are  dependable  tools,  the  open source  approach  guarantees  that  in  case  of  need  each
component can be replaced.

pLISA is  explicitly  based  on  the  assumption  that  the  machine  learning  engine  uses
Convolutional  Neural  Networks  (CNNs)  or  one  of  their  possible  evolutions.  Data  must  be
represented as  a multidimensional  rectangular grid,  suitable for CNNs. The structure of  the
network that transforms input data into a suitable output is free and depends on the application.
Some of the software packages used apply limitations on the number of dimensions of the data
grid.  It  is  expected  that  such
limitations will be removed in the
next future. Dead areas/volumes in
the  detector  structure,  in  the
current version of pLISA, are not
tagged, and there is no distinction
between “not being sensitive” and
“having  no  signal  in  one
area/volume for a specific event”.
Piecewise-defined  detectors  are
also possible by padding sensitive
areas/volumes with insensitive grid
elements.  However,  it  is  possible
to  add  element  sensitivity  as  an
additional  parameter in  the set  of
input data. pLISA assumes that the
primary information for each event
comes  as  a  set  of  hits,  i.e.  of
weighted  signals  localized  in
space,  time  (and  possibly  also
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Figure 1: Binning event hits in space and time. The
area  of  each  circle  may  represent  e.g.  the  energy
deposition.
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direction,  e.g.  for  photomultipliers).  The  discretisation step  maps  the  spatial  and  timing
information onto a space-time grid encompassing the whole detector for the duration of the
event. Hits in the same space-time bin are summed together (see Figure  1). This results in a
partial  loss  of  information  but  in  a  reduction  of  computational  complexity  and  memory
requirements, while speeding up the processing.

For  an  astroparticle  detector,  each  event  can  be  considered  completely  measured  and
studied if estimates are obtained of the primary particle type, energy and direction. Such goal
may be achieved to a certain degree depending on the application. The choice of the inner layers
of the CNN that is used to extract each parameter is not unique, and depends on the detector
structure.  Nevertheless,  one  may expect  that  most  networks  perform shape  analysis  on  the
configuration of hits and estimate the time evolution of the shape. Because the input neurons
always receive a multidimensional image (including the case of a “movie”, i.e. a set of images
taken at regular time intervals), the purpose of most convolutional layers will be the extraction
of synthetic information from local feature maps, interleaved with pooling/downsampling layers
that discard intermediate results with low information content. In particular, robustness of the
CNN to noise and to downgraded signals critically depends on how effective such layers are. It
is well known that overtrained and overspecialized networks tend to produce outputs that rely
on specific configurations and are unpredictably sensitive to small variations. The quality of the
training datasets is of paramount importance and should span the parameter space as extensively
as possible.

Neurons involved in later stages implement extraction of invariant features. It is usually
desirable that the output of the network has translational and rotational invariance with respect
to  the  direction  and position  of  the  incoming primary  particle.  The  training  dataset  should
enhance such features. It is possible to “augment” the dataset by adding multiple translated and
rotated copies of the same event to “teach” the network to work on global features rather than
local configurations. Depending on the detector geometry, translational and rotational invariance
may require more complex operations than just shifting the configuration of hits on a grid, and
in some cases it may be needed to simulate the detector response for each copy of the event. In
particular,  a  fully  contained  event  may become partially  contained.  The  final  layers  of  the
network are usually fully connected layers, mostly with the purpose of accurately reproducing
the desired output. Depending on the application, it might be a nonlinear function of the outputs
of neurons in the previous layers. Having a high number of neurons in the final layers helps
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Figure 2: Intermediate and final layers of a CNN in pLISA.
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approximating virtually any output function. The typical network structure is sketched in Figure
2. Real implementations may vary by also allowing branched paths and alternate routes for the
information flow to reconnect at later stages before the output.

3. Application to simulated events

Machine  learning  is  a
valuable tool if the estimation
of  output  quantities  can  be
truly  independent  on  any  a
priori selection  performed  by
“traditional”  algorithms.
pLISA  does  not  use  any
preprocessed  information.   In
order  to  develop  the  software
and a library of networks[4,5],
the  KM3NeT/ARCA  detector
(for  Astroparticle  Research
with  Cosmics  in  the  Abyss)
[6,7]  was  used  as  a  reference
and  events  from  standard
simulations  were  considered.
The  training  and  validation
data  samples  were  made  of
mixed  νμ and  νe   charged-
current  interactions  in  sea
water.  The  first  application
developed for pLISA is particle
identification.  In  a  large
fraction  of  cases  it  can  be
rather  straightforward,  as
shown in Figure 3, but in other
configurations  the  distinction
may  be  more  difficult.  The
related  performances  are
shown  in  Figure  4.  As
expected,  the  CNN  performs
better in the cases in which the
pattern  of  hits  is  better
contained  within  the  sensitive
volume.  Estimation  of
kinematical quantities (e.g. see
Figure 5) for different primary particles is done by using just one network with neither a priori
nor a posteriori particle type tagging. Traditional algorithms are often depending on the specific
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Figure  3: A muon neutrino event (top) and an electron neutrino
event (bottom) from KM3NeT/ARCA. The colour scales shows the
number  of  hits  in  the  same  space-time  bin.  Time  and  Z  are
replaced with the respective bin index.

Figure  4:  Particle  identification efficiency  as  a function  of  the
distance of the incident trajectory from the detector centre. The
KM3NeT/ARCA  detector  is  roughly  cylindrical  with  500  m
diameter.
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topology  or  particle:  for  example,  the
typical hit pattern of a high-energy muon
produced in a  charged-current  neutrino
interaction event is completely different
from an electromagnetic shower started
by an electron and different algorithms
are  used  to  estimate  direction  and
energy. The CNN approach can provide
direction  and  momentum  or  energy
estimation for several particle categories
in a single network. For comparison,  a
traditional  algorithm has an RMS error
of 0.001 on the estimation of the vertical
director  cosine  for  track-like  events
(mostly muons). pLISA has 0.002 on all
events  regardless  of  their  classification,  providing a  result  even when the traditional  fitting
algorithm does not converge. 

4. Conclusions and outlook

The results shown are very preliminary, as they were obtained with little training time.
pLISA can  already  provide  cross-checks  to  traditional  custom  algorithms,  using  instead
widespread  tools  and  technologies.  The  project  is  quickly  evolving,  and  it  is  envisaged  to
improve  by  removing  limitations  such  as  the  number  of  dimensions,  while  efficiency  and
detector distortion effects will soon be supported.
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Figure  5:  Energy  estimated  for  a  neutrino  vs.  true
energy as known from simulation.
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