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1. Introduction

The measured energy spectrum of cosmic rays (CRs) extends smoothly over more than
11 decades as a nearly featureless power law, I(E) << E-P. One of its most prominent features
is the knee, a break in the all-particle energy spectrum at the energy E; ~ 4 PeV, which was dis-
covered by Kulikov and Khristiansen in the data of the MSU experiment already in 1958 [1]. The
second knee corresponds to a change in the spectral slope of the all-particle energy spectrum at
~ 5 x 10'7 eV where the slope hardens by A ~ 0.2. There is a general consensus that the knee
in the total CR spectrum at Ex ~ 4 PeV coincides with a suppression of the primary proton and/or
helium flux, and that the composition becomes increasingly heavier in the energy range between
the knee and 10'7 eV [2, 3, 4, 5].

Explanations for the origin of the knee fall in two main categories, connecting it either with
a change in the propagation or the injection of CRs. In the first case, the knee energy may either
corresponds to the rigidity at which the CR Larmor radius Ry is of the order of the coherence length
l. of the turbulent magnetic field in the Galactic disk [6, 7]. Alternatively, the knee corresponds
to a transition between the dominance of pitch angle scattering to Hall diffusion or drift along the
regular field [8, 9, 10]. In both cases, the energy dependence of the confinement time changes which
in turn induces a steepening of the CR spectrum [11, 8, 9, 10, 6, 7]. In the second class of models,
the knee is connected to properties in the injection spectrum of the Galactic CR sources. For
instance, the knee might correspond to the maximal rigidity to which CRs can be accelerated by the
population of Galactic CR sources dominating the CR flux below PeV [12, 13, 14]. Alternatively,
the knee may be caused by a break in the source CR energy spectrum at this rigidity [15, 16]. A
variant of this model is the suggestion that the spectrum below the knee is dominated by a single,
nearby source and that the knee correspond to the maximal energy of this specific source [17, 18].
All these models lead to a sequence of knees at ZEy, a behaviour first suggested by Peters [19].

In the isotropic diffusion approximation one defines a scalar diffusion coefficient which de-
pends on energy as D(E) = Dy(E/Ey)®. Measurements of the Boron and Carbon fluxes espe-
cially by the AMS-02 experiment are consistent with Kolmogorov turbulence, i.e. § = 1/3, at
rigidities above ~ 100 GV [20]. The normalisation Dy is only weakly constrained using measure-
ments of stable nuclei, but can be restricted considering the ratio of radioactive isotopes as, e.g.,
10Be/’Be: Fitting successfully these ratios requires values of the normalisation constant Dy in the
range Dy = (3 —8) x 10%8cm?/s at Ey = 10 GeV [21, 22, 23]. For typical magnetic field strengths
of order uG and maximal length scales of fluctuations in the turbulent field of order 10 pc, numer-
ically calculated diffusion coefficients are two orders of magnitude below this value for Dy. Since
D scales for Kolmogorov turbulence as D o< B~!/3, the magnetic field strengths B would have to
be scaled down by a factor 107 to obtain agreement between the two approaches. This discrep-
ancy can be resolved, if the diffusion is sufficiently anisotropic and the magnetic field contains a
non-zero component perpendicular to the Galactic disk [24]. As a result, the number of sources
contributing to the locally observed flux is reduced by two orders of magnitude. Thus only few
sources contribute to the local CR flux at energies above 200 GeV.

In the energy range between 200 GeV and 100 TeV a 2-3 Myr old local supernova (SN), or a
complex of neighboring old SN, can dominate the local CR flux, as shown in Refs. [25, 26, 27].
A local SN event of the same age was deduced from °°Fe found in sediments in the ocean crust of
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the Earth [28, 29, 30] and on the Moon [31]. Such a local SN is able to to resolve the anomalies
which were found recently by CR experiments. This includes the energy dependence of the proton
to helium ratio, the breaks in the energy spectrum of primary nuclei at the rigidity 200 GV, the
positron excess, and the ratio R ~ 2 of positron to antiproton fluxes, see Refs. [25, 26, 27] for
details.

The phase of the CR dipole amplitude is constant between ~ 20 TeV and 100 PeV, except
for abrupt flip by 180° at ~ 200 TeV. Similarly, the dipole amplitude is approximately constant
above and below 200 TeV. This behaviour of the dipole anisotropy suggests that two CR sources
located in the two opposite hemispheres relative to the local magnetic field line dominate the CR
flux below and above this energy [32]. We suggest in this work that Vela, a 11 kyr old supernova
remnant (SNR)at the distance 270 pc, is the source dominating the local CR flux above 200 TeV.
We study the expected CR flux from Vela, which is connected with the Solar system by a magnetic
field line in models of the global Galactic magnetic field as, e.g., the Jansson—Farrar model [33]. If
this source would be indeed directly connected to the Solar system by a magnetic field line, its flux
would however overshoot the locally measured one by 3 orders of magnitude in case of anisotropic
diffusion. Such an excess is avoided, if one takes into account that the Earth is located inside
the Local Superbubble. We use a simplified model for the structure of the magnetic field inside the
Local Superbubble similar to the one of Refs. [34, 35], and follow individual CR trajectories solving
the Lorentz equation. Despite of using a simplified model for the Local Superbubble we obtain a
good description of the fluxes of individual groups of CR nuclei in the knee region and above.
Adding additionally the CR flux from the 2-3 Myr old source, the CR spectra in the whole energy
range between 200 GeV and the transition to extragalactic CRs are described well combining the
fluxes from only these two local sources.

2. Theoretical framework

2.1 Local Bubble and the geometry of the local magnetic field

The model used for the local magnetic field is very similar to the one used in [52], we apply
an exponential damping of the bubble magnetic field at z;,, ~ £3 pc to ensure the decaying of
the bubble magnetic field from the top and the bottom. The strength of the regular magnetic field
depends only on the radius and is set to Bj, = 0.1uG inside the bubble, By, = 8 — 12 G in the wall,
and Boy = 1 —3uG outside the bubble. The Sun is assumed to be at the centre of the LB, while
Vela is situated at the coordinates : rye, = 0.29kpc, lyela = —3.37°, byela = 263.94°. We interpolate
the transition between different magnetic field regimes by logistic functions 7' (r), with a transition
width parameter w;—1 >. we set

—R 2 —R—w/2
wi w2

For s = 17, the regular magnetic field Byeg = (B + Bj + B;) 1/2 is given
Forr <R

s x sin(9)

B = Bin(1=T1) + BnTi] <—s x cos(1)

) exp(—ZZ/Zbub) +Bout(1 - exp(—zz/zbub)),
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And forr > R

s X sin(9)

B= Bsh(1 - T2) +BoutT2] <—S v COS(‘B)

) exp(—2* /zoub) + Bout(1 — exp(—2* /zou)),
The turbulent magnetic field is taken to be randomly directed with modes distributed between
Lin = 1 AU and Ly« = 25 pc according to an isotropic Kolmogorov power spectrum.

For the external magnetic field we considered a regular magnetic field along the galactic arms
(the x coordinate) B(r) = B(x) with a total amplitude of 3 uG this is the simplest case wich holds
as a first approximation since the simulation scale still small compared the galactic magnetic field
scales usuly studied. In this configuration the turbulent magnetic field strength is set as follows.
For r > R—w/2 : By = Breg/2, and for r < R—w/2 : By = Breg %5

2.2 Injection spectrum

We use as CR injection spectrum for Vela a broken power law in rigidity with an exponential
cut off at the rigidity Zpax = 3 x 10V,

dN -2 i
{E , if E<ZEy o

dE ~ ) E2%exp(—E/(ZEmw)), if E > ZEq.

Where Ey. = 1PeV and Eyax = 3 PeV in a such way to be consistant with heavy nuclei flux. The
normalisation of the spectra for different groups of CR nuclei will be fixed such that the propagated
fluxes at Earth agree with observations.

The injection spectrum steepens at %, = 1 PV by AB = 0.9. Such a steepening is motivated
e.g. by the analysis of Ref. [15] Including strong field amplification as suggested by Bell and
Lucek [39, 40].

2.3 Calculation of the flux

In order to compute the flux, we injected 30.000 protons per energy at the position of Vela
and propagated them for 12.000 yr. We calculated the CR density n(E) in three regions of interest
averaging the CR densities between 8 to 12 kyr: Around the source, on the bubble wall, and inside
the bubble. The CR flux F(E) = ¢/(4m)n(E) was then computed from the CR densities in the
considered volumes, as defined in [52]

For energies below 100 TeV we deduced the flux from earlier times and higher energies using
the scaling relation for the flux inside the bubble :

(Elow/Ehigh)l/3 ~ tearly/tnow (22)

And on the wall, we could’nt use the same method because particles of lower energy simulated
E =0.1PeV reach the bubble wall before being in their diffusive mode the relation does not apply
anymore. To have a hint on how should the flux be supressed at lower energies, we computes
the flux at 1kpc from the source after 100kyr in a bubble like gemoetry using the equation (2.2)
and then we computed the ratio : F(E =1 x 10)/F(E = Ey,,,) for Ej,, = 1 x 1083 eV, Ej,,, =
2.15x 1083 eV and E},,,, = 4.64 x 103 eV and then we deduced the flux in the wall of our simulation
at Ej,,, from the flux at E = 1 x 10" eV by keeping the same ratios.
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3. Proton flux from Vela
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Figure 1: Flux of protons as function of energy computed inside the bubble centred on the Sun’s
position, on the bubble wall and around the source.

In Fig. 1, we show the normalised proton flux in the bubble wall, inside the bubble and around
the source. We can see that for high energies (E, > 10! eV) the bubble is transparent, since the
Larmor radius (Ry ~ 100 pc) of such protons is large compared to the thickness of the bubble wall.
For energies below 1 PeV, particles start to be trapped in the wall and the flux inside the bubble is

increasingly suppressed.
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Figure 2: The all-particles flux from Vela and from the 2-3 Myr SN and the extragalactic con-
tribution from Ref. [44] together with experimental data from NUCLEON [41], HAWC [45],
TAIGA [46], CREAM [42], KASCADE and KASCADE Grande [5], and AUGER [47].
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From Fig. 2, we see that the all-particles flux fits well the experimental data up to 10'7 eV. In
the energy range above 10! eV, the extragalactic contribution becomes important which we model
following Ref. [44].

We computed the total energy output of Vela from the normalisation of the simulated data
to the experimental ones: The relative energy fraction in protons found is 0.065, the one of he-
lium 0.15, of carbon 0.055 and of iron 0.045, respectively. We obtain then as total energy output
in CRs 3.7 x 10* erg. The total kinetic energy of the Vela supernova calculated in Ref. [49] is
1.4 x 10 erg. We note also that the CR acceleration efficiency of Vela should be high, as it is
expected in the scenario of strong magnetic field amplification of Refs. [39, 40].

4. Conclusions

In the standard diffusion picture it is assumed that Galactic CRs form a smooth, stationary
“sea” around the Galactic disk. Evidence for this assumption comes from y-ray observations,
which indicate a rather small variation of the parent CR populations below ~ 100 GeV throughout
the Galaxy outside of several kpc from the Galactic center [50]. Going to higher energies, CRs
escape faster and thus the number of CR sources contributing to the local flux diminishes. In order
to match the required diffusion coefficient with micro-gauss magnetic fields observed in the local
Galaxy the CR propagation should be strongly anisotropic [24]. Then the number of CR sources
decreases by a factor 100 relative to the case of isotropic diffusion. As a result, the CR flux should
be dominated by few local CR sources except for the lowest energies.

In this work, we have examined the suggestion put forward in Refs. [17, 18] that the spectrum
below the knee is dominated by CRs accelerated in the Vela SNR and that the knee corresponds
to the maximal energy of this source. As an important improvement compared to these earlier
studies, we have taken into account that the Sun is located inside the Local Superbubble and that
CRs propagate anisotropically. Without the influence of the Local Superbubble, the CR flux from
Vela at the position of the Sun would overshot the observed one by 3 order of magnitude, because
the Sun and Vela are connected by field lines of the regular magnetic field. Using a CR injection
spectrum with a break A ~ 0.9 at Ep, = 1 PeV as motivated by studies of Ref. [15], we have
obtained a good description of the flux of individual groups of CR nuclei both in the knee region and
above. Adding additionally the CR flux from the 2-3 Myr old source suggested in Ref. [25, 26, 27],
the CR spectra in the whole energy range between 200 GV and the transition to extragalactic CRs
are described well combining the fluxes from only these two Galactic sources.

Finally, we stress that, there is an important question to be addressed is how strong the dipole
anisotropy from Vela will be reduced, since the magnetic field on the bubble wall is almost 10
times higher then the sourrounding one, particles will more easily diffuse on the wall and occupate
a larger volume around the bubble. Last but not least, we note that the suggestion from Ref. [35]
that the Galactic soft neutrino component [51] in the ICeCube data is produced by CRs interacting
in the wall of a superbubble fits well in the scenario presented here, as explained in Ref. [53]

The reliability of our model on the differents parameters in actually studied, results will be
published soon.
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