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The Dark Matter Particle Explorer (DAMPE) is a space-borne particle detector and cosmic ray
observatory in operation since 2015, equipped with alongside other instruments a deep calorime-
ter able to detect electrons up to an energy of 10 TeV and cosmic hadrons up to 100 TeV. The
large proton and ion background in orbit requires a powerful electron identification method. In
recent years, the field of machine learning has provided such tools. We explore here a neural
network based approach to an on-orbit particle identification problem. We present the issues that
arise from the constraints of particle physics, notably the difference between training set based on
simulated data, and the application set based on real unlabeled data, leading to a trade-off between
performances and general usability. We finally compare the neural network discrimination power
with the more traditional cut-based analysis.
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1. The Dark Matter Particle Explorer - DAMPE

The DArk Matter Particle Explorer (DAMPE) is a cosmic ray detector and gamma ray tele-
scope in operation since December 2015 on a sun-synchronous orbit around the Earth[1][2]. It
is constituted of four subdetectors (fig. 1): a plastic scintillator (PSD) for absolute charge mea-
surement; a silicon tracker/converter (STK) for precise direction measurement and for enabling
photon pair production; a bismuth germanate imaging calorimeter (BGO) of about 32 radiation
lengths, made of 308 hodoscopically arranged bars in 14 layers and used for particle identification,
energy measurement, and trigger; and a neutron detector (NUD) for improving the identification of
hadronic showers.

Among the main scientific objectives of DAMPE is the study of cosmic electrons, leading
notably to the direct detection of a spectral break in the TeV region as the first scientific result of
the mission[3].

Figure 1: Layout of the DAMPE detector system

2. Electron identification

Measuring electrons in orbit requires a high rejection power for the main background source,
protons. Protons have the same absolute electric charge as electrons and their flux is orders of
magnitude stronger. The difference lies in the physical processes when interacting with matter:
protons produce a wide and deep hadronic shower, electrons produce narrower electromagnetic
showers. Classically, we can build high-level observables that quantify the shower shape inside a
calorimeter, and use it for particle discrimination[4]. In the DAMPE experiment, said observable is
a variable named { that combines the depth and spread of the shower inside the BGO calorimeter.
The DAMPE collaboration has talready detected a break in the cosmic electrons spectrum with
an analysis that exploits the e/p discrimination capabilities of {[3]. While powerful, such a hand-
crafted variable does not use the full information available in the detector, including the possibility
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to exploit the strong correlations between topological variables used to described the shower devel-
opment in the imaging calorimeter, and shows its limits above the TeV range where the topological
development of hadronic and electromagnetic showers in the detector is less pronounced. More
powerful methods are therefore required.

3. Neural networks for electron identification

Over the last decade, the fields of artificial intelligence and data sciences have been experienc-
ing an incredibly fast development, in no small part thanks to the advent of deep learning[5]. Deep
neural networks are now the state-of-the-art in a wide range of data-driven applications, from com-
puter vision to speech recognition, search engines or self-driving cars. They have been suggested
for particle physics as well[6].

We propose to use deep learning for electron identification. In machine learning terms, this
is a binary classification task: discriminate between a signal class (electrons) and a background
class (protons). We explore two techniques: a multivariate analysis using a multilayer perceptron
(section 3.1) and a pattern recognition using convolutional neural networks (section 3.2).

3.1 Multilayer perceptron (MLP)

The first approach is a regular feed-forward neural network, sometimes named multilayer
perceptrons (MLP). The architecture is a stack of fully connected layers of neurons. A neuron
is a mathematical unit that applies a non-linear function to the combination of its inputs and sends
the output value to the next layer. Mathematically, if a neuron receives as input a set {X;}, then its
output y is:

{xi} — y:f<ZWiXi> +b

where f is the non-linear activation function, w; the weights and b the bias. Both w; and b are
determined during the training procedure: the network is exposed to a set of labelled data (training
data), and uses gradient descent to minimise an error metric. In the case of classification, the
canonical choice for the error metric is the cross-entropy[7].

Such a network takes as input a one-dimensional set of variables {X;} and outputs a value in
the [0; 1] range that can be interpreted as the probability for an electron to produce {X;}.

Both the choice of our input variables and the determination of our MLP hyperparameters are
the result of an extensive optimisation and gridsearch[8] campaign using Nvidia GPUs. We settled
with a 4-layers network (fig. 2) using rectified linear units (ReLU)[7] activation and regularised
with dropout[9], with a total of 66k trainable parameters. Our model was trained over 100 iterations
(epochs) with the Adam optimiser[10]. The input variables are selected to be as descriptive as
possible of a shower interaction inside the calorimeter: the energy deposited in every layer of the
calorimeter, the spread of said deposition, the total reconstructed energy, and the inclination of
the reconstructed particle trajectory. We also add the { variable, used for the classical electron
identification. The motivation is to give the network our current best estimator along with the low
level quantities required to improve it.
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Figure 2: Schematics of the different neural networks, left the MLP and right the CNN. The second con-
volutional block is added for the case of separate XZ/YZ views of an event. Details of each technique are
presented in [5][7]

3.2 Convolutional neural networks (CNN)

The second approach is using pattern recognition techniques. The interaction of a particle
inside a calorimeter can be represented as an image, where the pixel values are the energy deposited
in every section of the detector (fig. 3). The BGO calorimeter is composed of 14 layers of 22 bars
each, which would hence result in a picture of 14x22 pixels. A complication however arises in
this approach: as described in section 1, the bars have an alternating orientation: there are 7 layers
with bars in the "X" direction, and the remaining 7 in the perpendicular "Y" direction. To build
an image out of an event, we can then either make two separated 7x22 pictures, or ignore this
alternating orientation and make a combined 14x22 picture. We choose to explore both options.

XZ view
Combined view

YZ view

Figure 3: Image representation of a simulated 2 TeV proton inside the BGO calorimeter.

The current state-of-the-art in pattern recognition is achieved through convolutional neural
networks (CNN)[5]. The idea is to have convolutional filters scanning through an image and learn-
ing to extract relevant patterns and features, interleaved with pooling layers that gradually down-
sample the image while providing translation invariance. The extracted features are then fed into
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a fully connected neural network for the final classification. Instead of going with a very compu-
tationally expensive optimisation campaign, we pick an off-the-shelf model[11] that exhibits good
performances on the low-dimensionality MNIST task[12]. The architecture (fig. 2) consists of 9
layers regularised with dropout and batch normalisation[13], with a total of 730k trainable parame-
ters. It is trained with the Adam optimiser over 50 epochs. For the case of two 7x22 pictures, each
image is fed into parallel convolutional blocks which are then merged into the dense layers.

3.3 Results

All models were trained on protons and electrons Monte Carlo (MC) events simulated with the
Geant4 package. The training data was prepared with a set of cleaning cuts to replicate the analysis
chain applied on real data, with in particular cuts to remove Helium nuclei[3]. We kept a balanced
set of roughly 1 million events per class, split 60/40 between training and testing.
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Figure 4: Log-scale histogram of the CNN output on Monte Carlo. Left: With a vanilla model, values are
crunched in the [0; 1] range, resulting in a background peak at 1.0 exactly as shown by the blue circle. Right:
By removing post-training the last activation function, we get a more monotonic behaviour for both classes.

A first feature we noticed is that the neural network output values are either very close (or
equal to) 0.0 or 1.0, with only few events classified in-between. This holds true for false positives
and false negatives as well: figure 4 (left) shows that the histogram of MC protons exhibits two
peaks: one at 0.0 (true negatives) and the second, much smaller, at 1.0 (false positives)!. The
overall distribution is therefore non-monotonic, which can be problematic: in further stages of the
analysis, we would like to estimate the performances and uncertainties directly from the flight data,
for example using a baseline background extrapolation. If said background has a non-monotonic
distribution, extrapolation methods become tricky if not outright impossible.

The cause is a feature of neural networks for classification: the very last operation is a logistic
sigmoid function that maps the output to the [0; 1] range:

B 1
C l4e>

f(x)

IThese events are likely protons that transfer most of their energy to one or several 7, starting E.M. showers
while the remaining energy starts only negligible hadronic showers. They are therefore the most difficult background to
distinguish from electron-induced showers.
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Values x > 0 are mapped to f(x) ~ 1.0, effectively compressing the output into a limited, finite
space. Computer floating point accuracy also has an influence: for a 16-bits float, f(18) = f(20) =
1.0 exactly. Therefore the function is not bijective anymore.

A possible workaround is to remove the logistic sigmoid from the output layer. This must be
done after training since the metrics being optimised (binary crossentropy) assume an output be-
tween 0 and 1. The result is shown on figure 4 (right): the compression and non-monotonic features
are gone, resulting in a distribution much easier to use for baseline extrapolation methods, without
altering the classification performances. Another important gain is getting rid of the seemingly
irreducible background: without the sigmoid we can select a small sample with 0% background,
by e.g. cutting away events with a score < 12. Whereas with the sigmoid, we still have protons
passing even a cut at 1.0.
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Figure 5: Sample ROC curve on Monte-Carlo for
the MLP, CNN with separated images, CNN with
combined images, and the classical { method, at
an energy around 2 TeV. The lowest curves have
the lowest background for a fixed efficiency.

Figure 6: Energy dependency of the surviving
background fraction for a fixed signal efficiency of
95%, for all neural networks and the classical {
method.

In order to quantify the classifier performances, we report on figure 5 a sample Receiver Op-
erating Characteristics (ROC) curve for all our neural networks, in comparison with the classical {
method, in an energy bin around 2 TeV. ROC curves are obtained by computing classification met-
rics at various discrimination thresholds, on the test sample. In our case we settle to plot the signal
efficiency against the remaining background. On the figure, classifiers with the lowest curves have
the smallest background for a set efficiency. We first see that all neural networks outperform the
classical method. To better quantify said improvement, we report on figure 6 the background when
we set the discrimination threshold such as to have a 95% signal efficiency, as a function of the en-
ergy reconstructed from the BGO calorimeter. This second plot shows first that the performances
gained by neural networks are more significant at higher energies, where { reaches its limits.

Curiously, we see that the combined image approach described in section 3.2 leads to a bet-
ter discrimination than the separated images, despite ignoring completely the X/Y orientation of
the BGO bars. This combination seems in fact necessary to fully exploit the power of pattern
recognition, as otherwise the CNN isn’t any more powerful than a much simpler MLP.

While figure 6 designs CNNs as the best method, an extra check is necessary: the compat-
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ibility between MC data and real, flight data. Figure 7 shows the output distribution for both
methods, comparing flight and MC data on a representative energy range. Both samples have been
cleaned such that contributions from other cosmic species, notably Helium nuclei, is negligible[3].
The matching between flight data and MC for the MLP classifier is better than that for the CNN
classifier. In the latter, the real electron peak is closer to protons than the MC one, resulting in effec-
tively lower performances than previously estimated. The apparent discrepancy in this case can be
accounted for by uncertainties related to the electronic response simulation of the BGO photomul-
tipliers, at very low energies of about few MeV. Due to the inner mechanisms of neural networks
and their high sensitivity to training data, in particular at low energies, even tiny differences can
get amplified up to high levels

This apparent decrease in CNN performances would need to be quantified, and raises the need
for a MC correction which would be a source of systematic uncertainties. MLP thus stands out as
an attractive compromise between raw classification performances and usability on real data.

Multilayer perceptron Convolutional NN
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Figure 7: Comparison between real (flight) and Monte-Carlo (MC) data for the multilayer perceptron (left)
and convolutional neural network (right), in the 1-2 TeV energy range.

4. Conclusion

The field of machine learning is ongoing a booming development thanks in no small part to
deep learning. While deep neural networks are only sparsely used in cosmic rays physics, we
demonstrate here that they hold the potential of reaching even more precise measurements as they
significantly outperform more classical methods, a welcome gain in an era of increasingly smaller
signals in particle physics. Yet we also demonstrate that they aren’t some sort of plug-and-play mir-
acle box and that instead some complications arise when moving away from naive benchmarking
towards practical application: their sensitivity to training data can throw them off when switching
to the real dataset. Nevertheless, the neural networks presented here will allow DAMPE to refine
its cosmic electrons measurements by improving the background rejection at the highest energies.
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