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Cosmic Ray Energetics And Mass for the International Space Station (ISS-CREAM) is an exper-
iment for studying the origin, acceleration, and propagation mechanisms of high-energy cosmic
rays. The ISS-CREAM instrument was launched on the 14th of August 2017 to the ISS aboard
the SpaceX-12 Dragon spacecraft. The Top and Bottom Counting Detectors (TCD/BCD) are
parts of the ISS-CREAM instrument and designed for studying electron and gamma-ray physics.
The TCD/BCD each consist of an array of 20 × 20 photodiodes on a plastic scintillator. The
TCD/BCD can separate electrons from protons by using the difference between the shapes of
electromagnetic and hadronic showers in the high energy region. The Boosted Decision Tree
(BDT) method, which is a deep learning method, is used in this separation study. We will present
results of the electron/proton separation study and rejection power in various energy ranges.
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1. Introduction

The ISS-CREAM detector was launched on the 14th of August 2017 (EDT) to the ISS aboard
the SpaceX-12 Dragon spacecraft. The ISS-CREAM detector can measure cosmic-ray protons
from 1 TeV to 1,000 TeV. By measuring these high energy cosmic-ray particles, the keys to answer
unsolved questions, such as origin and propagation of cosmic ray particles may be found.

The ISS-CREAM detector is composed of a Silicon Charge Detector (SCD), a calorimeter
(CAL), the Top and Bottom Counting Detectors (TCD/BCD) and a Boronated Scintillator Detector
(BSD) as shown in Fig. 1. The SCD measures charges and the CAL measures the energies of
the cosmic-ray. The TCD/BCD can separate electrons from hadrons using their different shower
shapes, and the BSD can also separate hadrons using thermal neutron produced in the CAL.

Figure 1: Schematic of the ISS-CREAM instrument, composed of the SCD, carbon targets, TCD/BCD,
CAL, and BSD [1]

2. Top and Bottom Counting Detectors

The TCD is placed above the CAL and the BCD is below the CAL. The size of the TCD is
901 × 551 mm2 and the BCD is 950 × 650 mm2. The height of the TCD is 30 mm and the BCD
is 33 mm. The TCD/BCD are composed of 20 × 20 photodiodes arrays and plastic scintillators.
The active area of the photodiodes is 20 × 20 mm2 with a thickness of 650 µm. The dimensions
of the plastic scintillators for the TCD/BCD are 500 × 500 × 5 mm3 and 600 × 600 × 10 mm3,
respectively.

Due to the active area of the photodiodes arrays and their location, the TCD/BCD can measure
the longitudinal and lateral profiles of the showers. Electromagnetic showers are narrower and
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more easily depleted than hadronic showers. Thus, TCD/BCD can separate electrons from hadrons
using their different shower shapes.

The TCD/BCD can also provide a low energy trigger. There are fourteen VA/TA chips in each
TCD/BCD as shown in Fig. 2. Only two VA/TA chips in middle of the two mother boards are
connected to twenty photodiodes, while other VA/TA chips are connected to thirty photodiodes.
The TCD/BCD trigger is designed to respond to events with a signal above threshold in at least one
VA/TA chip in the TCD and at least two VA/TA chips in the BCD.

Figure 2: A schematic of the TCD/BCD with a layout of its electronics components. Twenty photodiodes
are connected to the middle of VA/TA chip in the mother board, thirty photodiodes are connected to each
other VA/TA chips [2]

2.1 Performance of the TCD/BCD on the ISS

During the flight, we monitored the pedestal RMS and charge gain values of the TCD/BCD.
As shown in Fig. 3, the pedestal RMS of the TCD/BCD was stable during the flight and smaller
than 20 ADC. Also, we checked the RMS values of each channel when the ISS passes through the
South Atlantic Anomaly (SAA). In the SAA, the detectors are exposed to proton rates of ∼4000/(s
× cm2 × sr) with ∼20 MeV [3]. When the ISS passes through the SAA, ISS-CREAM had initially
turned off to avoid the radiation damage. However, the ISS-CREAM was turned on to check the
status of each detector in November 2017. The pedestal RMS distribution of TCD/BCD didn’t
change before or after SAA transits as shown in Fig. 4.

Each TCD/BCD channel is calibrated using a known amount of charge. The gain of the chan-
nel is defined as the ratio of the response value (ADC) to the input charge (DAC). The most channels
in the TCD/BCD show similar charge gain values with an average of 324 ADC/DAC for both as
shown in Fig. 5.

The TCD/BCD can measure the position of the cosmic-ray particles using their 20 × 20 pho-
todiodes arrays. Since CAL is located between the TCD and the BCD, the track information of
cosmic ray particles in the CAL is a good reference to confirm the hit positions in the TCD/BCD.
The position of TCD/BCD is calculated using energy weighted average position. Fig. 6 shows scat-
ter plots of the TCD/BCD hit positions using extrapolated tracks in the CAL and energy weighted
average position with good linear correlation. The 1σ value of the differences in the two positions
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Figure 3: Pedestal RMS values of one channel in the TCD/BCD. The pedestal RMS values are stable from
deployment up to shutdown in February 2019 and less than 20 ADC.

in the TCD is 67.9 mm along the x axis and 64.9 mm along the y axis. In the BCD, the 1σ position
difference is 63.0 mm along the x and y axes.

Figure 4: The TCD pedestal RMS distribution before, during and after SAA (left), and those of BCD (right).
The pedestal distribution of the detectors are almost same before and after each SAA period.

3. e/p Separation

Because the protons are the dominant component in cosmic ray particles [4], one of the most
important things in studying electron spectrum is separation of electrons from the protons. The
electrons and proton can’t be separated using the SCD, since they have the same absolute charge.
The TCD/BCD can separate electrons from protons using the difference between electromagnetic
showers and hadronic showers.

3.1 Event Selection

Before separating electrons from protons, we need to select meaningful data. To select charge
1 particles, the data which have SCD charge values from 0.3 to 1.7 are selected. To exclude noise
events, the events which didn’t pass the trigger condition are removed, and events triggered within
the SAA region are also removed. Also, the time periods that have higher trigger rates than normal
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Figure 5: Each channel of TCD/BCD has similar charge gain value. The mean of charge gain values of
TCD/BCD is 324 ADC/DAC.

Figure 6: Scatter plots of TCD/BCD hit positions. The CAL X, Y are hit positions in the TCD/BCD using
extrapolated tracks in the CAL. The TCD/BCD X, Y are energy weighted average position in TCD/BCD.
These two estimated hit positions show a strong linear correlation.

condition are excluded. Therefore, the events which were triggered when the TCD/BCD bias
voltages are off or pedestal data are abnormal are removed.

3.2 Boosted Decision Tree

The Boosted Decision Tree (BDT) is a machine learning method [5]. A decision tree is a
sequence of binary splits of the data. Repeated decisions are made on a single variable at a time
until a stop criterion is fulfilled. A single decision tree is unstable since the small fluctuations in
training data can make large differences in results. Boosting is used to improve the instability of
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a single decision tree. For boosting, the training data which are misclassified have their weights
increased, and a new tree is formed. This procedure is then repeated for the new tree.

In this study, the shower distribution, the number of hits, and deposited energy in the TCD/BCD
are used. The proton and electron data simulated by the Geant3 Monte-Carlo (MC) are used for
BDT training. The energy of the proton data starts from 300 GeV and follows a power law distribu-
tion with a -2.7 spectrum index. The energy of the electron data starts from 100 GeV and follows a
power law distribution with a -3.0 spectrum index. The Fig. 7 shows BDT test results distribution
with deposited energy in CAL.

The BDT was trained in three energy regions from 150 GeV to 300 GeV. The Fig. 8 shows
the BDT variable distribution from 189 GeV to 238 GeV. The trained MC BDT is well matched
with the ISS data BDT distribution and electrons are well separated from protons. In the BDT
distribution, approximately ∼75% events are protons and ∼25% are electrons.

Figure 7: The distribution of the MC BDT test result with respect to CAL deposited energy. The red dots
are electrons and blue dots are protons. Electrons have a BDT variable value close to 1 and proton have a
BDT value close to -1.

4. Results

The rejection power (RP) was calculated using fractions of electrons and protons to total num-
ber of events as defined in [6]. We choose the BDT cut value when the number of electrons is
90% in each energy region. The CALET electron spectrum [7] is used to get Ne total in each energy
region and the AMS-02 proton spectrum data [8] is used to get Np total in the energy region from
150 GeV to 900 GeV. We study the rejection power in several electron energy regions (150 GeV
− 189 GeV, 189 GeV − 238 GeV, 238 GeV − 300 GeV). The electrons and protons that have a
BDT variable value larger than the BDT cut value are selected in each energy region. The proton
rejection power from 150 GeV to 189 GeV of electrons is (1.0 ± 0.4) × 104, from 189 GeV to 238
GeV it is (2.2 ± 0.9) × 104, and from 238 GeV to 300 GeV it is (6.4 ± 1.7) × 103. These proton
rejection power results show similar values to the previous MC studies [9].
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Figure 8: The BDT variable distribution from 189 GeV to 238 GeV electrons for ISS data and MC. The
black dots are data taken on the ISS. Blue and green histograms are proton and electron MC. The red
histogram is total MC. Data appears to consist of approximately ∼75% protons are and ∼25% electrons.

5. Conclusion

The TCD/BCD, one of the detectors in ISS-CREAM instrument, is working well on the ISS.
The pedestal RMS and charge gain values are stable. The hit positions in the TCD/BCD and CAL
reconstructed cosmic ray particles’ tracks show good correlation. Also, the TCD/BCD status were
normal during the SAA periods.

One of the goals of the TCD/BCD is separating electrons from protons. In this study, we get
the proton rejection power in three energy regions, 150 GeV − 189 GeV, 189 GeV − 238 GeV and
238 GeV − 300 GeV. The RP in each energy region is 1.0 × 104, 2.2 × 104 and 6.4 × 103. This
preliminary result is comparable to previous MC studies. In this study, the improved CAL track
reconstruction method, CAL energy calibration, TCD/BCD energy calibration, and SCD charge
reconstruction aren’t applied yet. We will study e/p separation in higher energy region, and add
BDT training variable using CAL data.
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