Track Reconstruction for ISS-CREAM Resulting in Improved Energy and Charge Resolutions
J.P. Lundquist* on behalf of the ISS-CREAM Collaboration, Y. Amare, D. Angelaszek, N. Anthony, G. H. Choi,
M. Chung, M. Copley, L. Derome, L. Eraud, C. Falana, A. Gerrety, L. Hagenau, J. H. Han, H. G. Huh, Y. S. Hwang, H. J. Hyun, H. B. Jeon, J. A. Jeon, S. Jeong, S. C. Kang, H. J. Kim, K. C. Kim, M. H. Kim, H. Y. Lee, J. Lee, M. H. Lee, C. Lamb, J.F. Liang, L. Lu, L. Lutz, B. Mark, A. Mechaca-Rocha, T. Mernik, M. Nester, O. Ofoha, H. Park, I. H. Park, J. M. Park, N. Picot-Clemente, S. Rostsky, E. S. Seo, J. R. Smith, R. Takeishi, T. Tatoli, P. Walpole, R. P. Weinmann, J. Wu, Z. Yin, Y. S. Yoon and H. G. Zhanget al. (click to show)
Pre-published on:
August 20, 2019
Published on:
July 02, 2021
Abstract
Cosmic Ray Energetics And Mass for the International Space Station (ISS-CREAM) has taken 1.5 years of direct measurements of high-energy cosmic ray (HECR) particles for energies from 10$^{12}$ to 10$^{15}$ eV. HECR particle identification is significantly improved by tracking particle-detector interactions from the calorimeter (CAL) back to the Silicon Charge Detector (SCD) for charge determination. A track finding algorithm resistant to such issues as particle multiplicity, backscatter, and electronic noise will be outlined. Also, shown is the energy resolution improvement, and the resulting all particle spectrum, provided by ensuring good particle tracks. This allows ISS-CREAM to investigate how the energy distributions evolve, for protons all the way to iron nuclei, and will provide important information for models of galactic sources and HECR propagation.
DOI: https://doi.org/10.22323/1.358.0099
How to cite
Metadata are provided both in "article" format (very similar to INSPIRE) as this helps creating
very compact bibliographies which can be beneficial to authors and
readers, and in "proceeding" format
which is more detailed and complete.