Main Image
Volume 358 - 36th International Cosmic Ray Conference (ICRC2019) - NU - Neutrino
Hybrid detection of high-energy cosmic neutrinos with the next generation neutrino detectors at the South Pole
S. Toscano,* P. Coppin, K. de Vries, N. van Eijndhoven, J.A. Aguilar
*corresponding author
Full text: pdf
Pre-published on: 2019 July 22
Published on:
In 2013 the IceCube collaboration announced the discovery of a cosmic neutrino flux up to PeV energies, validating neutrino astronomy as the next promising observational technique to explore the high-energy Universe. The neutrino community is moving forward with the construction of new facilities to enhance the detection of these elusive particles at higher energies (up to and beyond EeV) and to increase the statistics at the high-energy end of the IceCube neutrino flux. Future large volume neutrino detectors, using both the radio Askaryan and the optical Cherenkov signal, will open the possibility of hybrid detection of neutrino interactions within the polar ice. In this contribution we present a first calculation of the expected number of events for a simplified geometry of one radio station located at 200 m depth in the vicinity of a $\sim$ 10 km$^3$ in-ice Cherenkov detector, similar to the planned IceCube-Gen2 neutrino observatory. Preliminary simulations show that a total event rate of $\sim 1$ event/year is achievable for a 10-stations array assuming that the Askaryan radio detectors can lower their energy threshold down to $\sim$ PeV energies. Such a possibility is currently under study for the future radio extension foreseen as one of the surface components of IceCube-Gen2.
Open Access
Creative Commons LicenseCopyright owned by the author(s) under the term of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.