Cosmic ray small-scale anisotropies in quasi-linear theory
P. Mertsch* and M. Ahlers
Pre-published on:
July 22, 2019
Published on:
July 02, 2021
Abstract
The distribution of arrival directions of cosmic rays is remarkably isotropic, which is a consequence of their repeated scattering in magnetic fields. Yet, high-statistics observatories like IceCube and HAWC have revealed the presence of small-scale structures at levels of 1 part in 10,000 at hundreds of TeV, which are not expected in typical diffusion models of cosmic rays. We follow up on the suggestion that these small-scale anisotropies are a result of cosmic ray streaming in a particular realisation of the turbulent magnetic field within a few scattering lengths in our local Galactic neighbourhood. So far, this hypothesis has been investigated mostly numerically, by tracking test particles through turbulent magnetic fields. For the first time, we present an analytical computation that through a perturbative approach allows predicting the angular power spectrum of cosmic ray arrival directions for a given model of turbulence. We illustrate this method for a simple, isotropic turbulence model and we find remarkable agreement with the results of numerical studies.
DOI: https://doi.org/10.22323/1.358.0105
How to cite
Metadata are provided both in "article" format (very similar to INSPIRE) as this helps creating
very compact bibliographies which can be beneficial to authors and
readers, and in "proceeding" format
which is more detailed and complete.